Normalized defining polynomial
\( x^{18} - 4 x^{17} - 77 x^{16} - 186 x^{15} + 6112 x^{14} + 26100 x^{13} - 79910 x^{12} - 856236 x^{11} - 1687355 x^{10} - 3787964 x^{9} + 93538987 x^{8} + 176088726 x^{7} + 8509113946 x^{6} - 42706675732 x^{5} + 161608733256 x^{4} + 230802504368 x^{3} + 6364008129664 x^{2} - 7002971574528 x + 29398869968896 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3003200821410347323073992859276234352128000000000=-\,2^{18}\cdot 5^{9}\cdot 7^{15}\cdot 13^{15}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $493.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{56} a^{9} - \frac{1}{28} a^{8} - \frac{1}{28} a^{7} - \frac{3}{28} a^{6} - \frac{3}{56} a^{5} + \frac{3}{14} a^{4} + \frac{1}{7} a^{3} - \frac{1}{14} a^{2} - \frac{1}{14} a - \frac{1}{7}$, $\frac{1}{112} a^{10} + \frac{1}{112} a^{8} - \frac{5}{56} a^{7} + \frac{13}{112} a^{6} - \frac{1}{14} a^{5} + \frac{11}{112} a^{4} + \frac{27}{56} a^{3} + \frac{15}{56} a^{2} - \frac{11}{28} a - \frac{1}{7}$, $\frac{1}{224} a^{11} - \frac{1}{224} a^{9} + \frac{1}{28} a^{8} + \frac{17}{224} a^{7} - \frac{3}{28} a^{6} - \frac{39}{224} a^{5} + \frac{1}{14} a^{4} - \frac{7}{16} a^{3} - \frac{2}{7} a^{2} - \frac{1}{28} a - \frac{3}{7}$, $\frac{1}{224} a^{12} - \frac{1}{224} a^{10} + \frac{5}{224} a^{8} - \frac{1}{28} a^{7} + \frac{9}{224} a^{6} - \frac{1}{14} a^{5} + \frac{1}{112} a^{4} + \frac{5}{28} a^{3} + \frac{5}{14} a^{2} + \frac{3}{14} a + \frac{2}{7}$, $\frac{1}{15232} a^{13} + \frac{9}{15232} a^{12} - \frac{5}{15232} a^{11} - \frac{13}{15232} a^{10} - \frac{47}{15232} a^{9} - \frac{839}{15232} a^{8} + \frac{147}{2176} a^{7} + \frac{1789}{15232} a^{6} + \frac{1395}{7616} a^{5} + \frac{59}{7616} a^{4} + \frac{87}{272} a^{3} - \frac{741}{1904} a^{2} - \frac{1}{14} a - \frac{2}{7}$, $\frac{1}{15232} a^{14} - \frac{9}{7616} a^{12} + \frac{1}{476} a^{11} + \frac{1}{7616} a^{10} + \frac{1}{119} a^{9} + \frac{27}{1904} a^{8} - \frac{93}{952} a^{7} - \frac{43}{896} a^{6} + \frac{43}{238} a^{5} + \frac{1429}{7616} a^{4} - \frac{17}{56} a^{3} - \frac{675}{1904} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{60928} a^{15} - \frac{1}{30464} a^{14} - \frac{1}{30464} a^{13} - \frac{1}{476} a^{12} - \frac{3}{30464} a^{11} - \frac{1}{3808} a^{10} - \frac{3}{476} a^{9} + \frac{431}{15232} a^{8} + \frac{2525}{60928} a^{7} + \frac{2241}{30464} a^{6} - \frac{5319}{30464} a^{5} + \frac{97}{15232} a^{4} - \frac{145}{7616} a^{3} + \frac{11}{32} a^{2} - \frac{13}{56} a$, $\frac{1}{3594752} a^{16} - \frac{19}{3594752} a^{15} - \frac{23}{898688} a^{14} + \frac{25}{1797376} a^{13} - \frac{545}{256768} a^{12} + \frac{2595}{1797376} a^{11} - \frac{1809}{449344} a^{10} - \frac{3053}{898688} a^{9} + \frac{26263}{513536} a^{8} + \frac{189797}{3594752} a^{7} + \frac{107857}{898688} a^{6} - \frac{206615}{1797376} a^{5} + \frac{1001}{128384} a^{4} + \frac{5739}{449344} a^{3} + \frac{54237}{224672} a^{2} - \frac{645}{3304} a + \frac{96}{413}$, $\frac{1}{25479797930897490563124383686711587084776897416425294837705586711699408661417984} a^{17} + \frac{2772249952864713070788988035388252904992393944397745100517617277154538739}{25479797930897490563124383686711587084776897416425294837705586711699408661417984} a^{16} - \frac{295525643852885637997102248658289231427196123509296994540110086148305163}{187351455374246254140620468284644022682183069238421285571364608174260357804544} a^{15} - \frac{45199458211635571132160389974429007881398551774461458439617332825133713985}{12739898965448745281562191843355793542388448708212647418852793355849704330708992} a^{14} + \frac{53767120096636247712226768020437183235740160452084278178402953697833793321}{12739898965448745281562191843355793542388448708212647418852793355849704330708992} a^{13} - \frac{7740273282001269067815309976973320051531396272058916248131423851123624504791}{12739898965448745281562191843355793542388448708212647418852793355849704330708992} a^{12} + \frac{5215543548029683517325691305903381241660785403382485868932556912229145645735}{3184974741362186320390547960838948385597112177053161854713198338962426082677248} a^{11} - \frac{393176386763990598364661105193339549936121951092563072435532629474205562491}{107965245469904621030188066469116894427020751764513961176718587761438172294144} a^{10} - \frac{198224266972809192470415151251629845897334954734113978280900526163583773602295}{25479797930897490563124383686711587084776897416425294837705586711699408661417984} a^{9} - \frac{164702408242625602446264829102483569140436496055892061916995014669898649310221}{25479797930897490563124383686711587084776897416425294837705586711699408661417984} a^{8} + \frac{82829093803118954796623900377650687361718821221135158528599320411760509621281}{796243685340546580097636990209737096399278044263290463678299584740606520669312} a^{7} + \frac{1462126666395301446407893846493460804179298510197762235675417528679198154666443}{12739898965448745281562191843355793542388448708212647418852793355849704330708992} a^{6} + \frac{958347723961682193209594461369954635091454814714052257366771112916058892036125}{6369949482724372640781095921677896771194224354106323709426396677924852165354496} a^{5} + \frac{593933079314837404163243776324484086413782640936483451364777220116987308341715}{3184974741362186320390547960838948385597112177053161854713198338962426082677248} a^{4} - \frac{73993164129788638730180128466532141561333248336178789884437148756121568883}{13382246812446161010044319163188858763013076374172948969383186298161454128896} a^{3} - \frac{2104591899127602352974451797188451711968840453108499865823749718443113711827}{11709465960890390883788779267790251417636441827401330348210288010891272362784} a^{2} + \frac{143968535796356409502398125220095644253403905476053144722607528911552556255}{344396057673246790699669978464419159342248289041215598476773176790919775376} a - \frac{2806777338456219850350857462439441988563203917693852114981458130933010833}{6149929601307978405351249615436056416825862304307421401370949585552138846}$
Class group and class number
$C_{2}\times C_{6}\times C_{472686840}$, which has order $5672242080$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55972376075.29769 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-455}) \), 3.3.114920.1, 3.3.8281.1, Deg 6, 6.0.780040181375.1, Deg 9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |