Normalized defining polynomial
\( x^{18} + 34 x^{16} - 13 x^{15} + 567 x^{14} - 279 x^{13} + 7100 x^{12} - 380 x^{11} + 71045 x^{10} + 25446 x^{9} + 522337 x^{8} + 265934 x^{7} + 2635061 x^{6} + 1204439 x^{5} + 8662708 x^{4} + 2593860 x^{3} + 16839843 x^{2} + 2010611 x + 14591569 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29902909752142884167850994584247=-\,7^{12}\cdot 71^{3}\cdot 113^{3}\cdot 64679^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 71, 113, 64679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{6}{13} a^{15} + \frac{2}{13} a^{14} - \frac{6}{13} a^{13} + \frac{5}{13} a^{12} + \frac{3}{13} a^{11} + \frac{5}{13} a^{10} + \frac{5}{13} a^{9} + \frac{2}{13} a^{8} + \frac{2}{13} a^{7} + \frac{3}{13} a^{6} + \frac{5}{13} a^{5} - \frac{5}{13} a^{4} - \frac{4}{13} a^{3} + \frac{6}{13} a^{2} + \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{1326317894176976991857346587814932241960662339586161} a^{17} - \frac{44347939846466037440029184559728325444290688262887}{1326317894176976991857346587814932241960662339586161} a^{16} + \frac{101444541248024860273047589673255756310493005419914}{1326317894176976991857346587814932241960662339586161} a^{15} + \frac{657562511100952203654057293799708654531630623843514}{1326317894176976991857346587814932241960662339586161} a^{14} + \frac{653720337755533712348497681655152358207149278508176}{1326317894176976991857346587814932241960662339586161} a^{13} - \frac{26976140605366582646517606519054513367867510378791}{1326317894176976991857346587814932241960662339586161} a^{12} - \frac{360132136927341189318497660306001261118439406945334}{1326317894176976991857346587814932241960662339586161} a^{11} + \frac{75526593184084366623625178491646520431579838237408}{1326317894176976991857346587814932241960662339586161} a^{10} - \frac{139414826750450216068824187751542737832585554238754}{1326317894176976991857346587814932241960662339586161} a^{9} - \frac{419675304199308078822374642110754981865280034090091}{1326317894176976991857346587814932241960662339586161} a^{8} - \frac{491798537727898522693757616360189400909315828317460}{1326317894176976991857346587814932241960662339586161} a^{7} - \frac{515097070519025770618903807838922792269100888389884}{1326317894176976991857346587814932241960662339586161} a^{6} + \frac{16277726759629678122732366286207692038732366331360}{102024453398228999373642045216533249381589410737397} a^{5} + \frac{480890402528269658039195630119101769411355714988329}{1326317894176976991857346587814932241960662339586161} a^{4} - \frac{270073059914407051901356468463242418242981713813375}{1326317894176976991857346587814932241960662339586161} a^{3} - \frac{323909852612150596005021714648914005708333677166652}{1326317894176976991857346587814932241960662339586161} a^{2} + \frac{2903307302726188303704302907886009146283441031810}{1326317894176976991857346587814932241960662339586161} a + \frac{477976221522929793182553146754439176320362374759500}{1326317894176976991857346587814932241960662339586161}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26315478.7454 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 88 conjugacy class representatives for t18n472 are not computed |
| Character table for t18n472 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.19263223.1, 9.7.7609419671.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.6.3.1 | $x^{6} - 142 x^{4} + 5041 x^{2} - 1431644$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $113$ | $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.6.3.1 | $x^{6} - 226 x^{4} + 12769 x^{2} - 36072425$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 64679 | Data not computed | ||||||