Normalized defining polynomial
\( x^{18} - 3 x^{17} + 11 x^{15} - 9 x^{13} - 141 x^{12} + 132 x^{11} + 546 x^{10} - 660 x^{9} - 768 x^{8} + 1344 x^{7} + 644 x^{6} - 2184 x^{5} + 480 x^{4} + 1504 x^{3} - 768 x^{2} - 384 x + 256 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-298880559887628015710208=-\,2^{12}\cdot 3^{21}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{3}{16} a^{9} - \frac{7}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{16} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{5}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} - \frac{5}{16} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1088} a^{16} + \frac{3}{1088} a^{15} - \frac{15}{544} a^{14} - \frac{41}{1088} a^{13} + \frac{53}{544} a^{12} - \frac{125}{1088} a^{11} + \frac{5}{1088} a^{10} - \frac{47}{544} a^{9} + \frac{143}{544} a^{8} - \frac{13}{34} a^{7} - \frac{2}{17} a^{6} + \frac{9}{68} a^{5} - \frac{127}{272} a^{4} - \frac{11}{68} a^{3} + \frac{13}{34} a^{2} + \frac{15}{34} a - \frac{7}{17}$, $\frac{1}{57246441087116416} a^{17} - \frac{23178915969143}{57246441087116416} a^{16} - \frac{94435437230279}{7155805135889552} a^{15} + \frac{516198049146591}{57246441087116416} a^{14} + \frac{356776702043451}{14311610271779104} a^{13} - \frac{3432938820325109}{57246441087116416} a^{12} - \frac{5221597342281}{1396254660661376} a^{11} - \frac{270925137252949}{14311610271779104} a^{10} + \frac{5472664004737407}{28623220543558208} a^{9} - \frac{2333542274390157}{14311610271779104} a^{8} + \frac{43529377002051}{7155805135889552} a^{7} + \frac{410638072021663}{894475641986194} a^{6} + \frac{3720790976695777}{14311610271779104} a^{5} - \frac{3114549342376675}{7155805135889552} a^{4} - \frac{1220473302528737}{3577902567944776} a^{3} + \frac{467978712869867}{1788951283972388} a^{2} - \frac{22183758907023}{447237820993097} a - \frac{174691884413845}{447237820993097}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{33747226629}{140861612608} a^{17} + \frac{35868966671}{70430806304} a^{16} + \frac{62716597629}{140861612608} a^{15} - \frac{315409515073}{140861612608} a^{14} - \frac{277586722103}{140861612608} a^{13} + \frac{59464192267}{140861612608} a^{12} + \frac{58754710115}{1717824544} a^{11} - \frac{233871670305}{140861612608} a^{10} - \frac{4656164306373}{35215403152} a^{9} + \frac{2929024477819}{70430806304} a^{8} + \frac{3877624370801}{17607701576} a^{7} - \frac{278040785589}{2200962697} a^{6} - \frac{9343212247085}{35215403152} a^{5} + \frac{10102093902617}{35215403152} a^{4} + \frac{1215313124323}{8803850788} a^{3} - \frac{1029433880067}{4401925394} a^{2} - \frac{57854647844}{2200962697} a + \frac{148560363351}{2200962697} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88502.84742509261 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.105212405952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |