Normalized defining polynomial
\( x^{18} - 9 x^{17} + 42 x^{16} - 129 x^{15} + 264 x^{14} - 324 x^{13} + 126 x^{12} + 369 x^{11} - 819 x^{10} + 711 x^{9} + 162 x^{8} - 1215 x^{7} + 1608 x^{6} - 1269 x^{5} + 729 x^{4} - 333 x^{3} + 117 x^{2} - 27 x + 3 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-297650820707983690149888=-\,2^{12}\cdot 3^{31}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{14} - \frac{2}{7} a^{13} + \frac{3}{7} a^{12} - \frac{2}{7} a^{10} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{14} + \frac{1}{7} a^{12} - \frac{2}{7} a^{11} + \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{80802735730283} a^{17} - \frac{4535132339027}{80802735730283} a^{16} - \frac{1793526400509}{80802735730283} a^{15} + \frac{16511630724905}{80802735730283} a^{14} + \frac{35329446934030}{80802735730283} a^{13} + \frac{16534233289659}{80802735730283} a^{12} + \frac{27898233651924}{80802735730283} a^{11} - \frac{11456376131096}{80802735730283} a^{10} - \frac{6305423980162}{80802735730283} a^{9} - \frac{36571844611397}{80802735730283} a^{8} + \frac{12048473729864}{80802735730283} a^{7} + \frac{18216096698679}{80802735730283} a^{6} - \frac{5565846668190}{11543247961469} a^{5} + \frac{37678358602995}{80802735730283} a^{4} - \frac{35618967041375}{80802735730283} a^{3} - \frac{366900269653}{11543247961469} a^{2} - \frac{526136218134}{80802735730283} a + \frac{33305999809806}{80802735730283}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{223828226532}{24612469001} a^{17} + \frac{1848054751407}{24612469001} a^{16} - \frac{8004176785874}{24612469001} a^{15} + \frac{22744707214086}{24612469001} a^{14} - \frac{41439062414148}{24612469001} a^{13} + \frac{39693396171237}{24612469001} a^{12} + \frac{4733183177958}{24612469001} a^{11} - \frac{81795320579322}{24612469001} a^{10} + \frac{121021578911702}{24612469001} a^{9} - \frac{61498762820730}{24612469001} a^{8} - \frac{91284537460350}{24612469001} a^{7} + \frac{206828092379994}{24612469001} a^{6} - \frac{195981226422180}{24612469001} a^{5} + \frac{121386158887752}{24612469001} a^{4} - \frac{59494279599486}{24612469001} a^{3} + \frac{22963470724908}{24612469001} a^{2} - \frac{5727667099788}{24612469001} a + \frac{661411624648}{24612469001} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 145692.568555 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.756.1, 6.0.1714608.1, 6.0.314928.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |