Normalized defining polynomial
\( x^{18} - 6 x^{17} + 39 x^{16} - 150 x^{15} + 669 x^{14} - 1584 x^{13} + 4191 x^{12} - 10746 x^{11} + 16053 x^{10} - 31018 x^{9} + 54399 x^{8} - 57408 x^{7} + 104028 x^{6} - 119904 x^{5} + 49968 x^{4} - 132864 x^{3} + 112896 x^{2} + 43008 x + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2970134640629244629640134970003=-\,3^{31}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} + \frac{1}{8} a^{7} - \frac{1}{32} a^{6} + \frac{5}{32} a^{5} - \frac{1}{32} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{15}{64} a^{7} - \frac{11}{64} a^{6} - \frac{1}{64} a^{5} - \frac{1}{4} a^{4} + \frac{3}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} + \frac{1}{128} a^{12} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{15}{128} a^{8} - \frac{11}{128} a^{7} + \frac{31}{128} a^{6} + \frac{1}{8} a^{5} - \frac{7}{32} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{15} + \frac{1}{128} a^{12} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{5}{128} a^{9} + \frac{1}{32} a^{8} - \frac{7}{32} a^{7} - \frac{21}{128} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{221696} a^{16} + \frac{291}{110848} a^{15} - \frac{517}{221696} a^{14} + \frac{437}{110848} a^{13} - \frac{3207}{221696} a^{12} - \frac{1259}{55424} a^{11} - \frac{13729}{221696} a^{10} - \frac{6875}{110848} a^{9} + \frac{12609}{221696} a^{8} - \frac{24437}{110848} a^{7} - \frac{1725}{221696} a^{6} + \frac{11015}{55424} a^{5} + \frac{3351}{55424} a^{4} - \frac{6789}{13856} a^{3} - \frac{4213}{13856} a^{2} - \frac{1261}{3464} a - \frac{243}{866}$, $\frac{1}{2907626681873310790051616768} a^{17} + \frac{2624247072738851774123}{1453813340936655395025808384} a^{16} - \frac{204206549561964718670545}{2907626681873310790051616768} a^{15} - \frac{5258345282239643864671481}{1453813340936655395025808384} a^{14} - \frac{7722823006290085092519243}{2907626681873310790051616768} a^{13} + \frac{7103992643925421158467259}{726906670468327697512904192} a^{12} + \frac{17430087368884691700455551}{2907626681873310790051616768} a^{11} - \frac{22995752890408190921717899}{1453813340936655395025808384} a^{10} + \frac{99847305829466169208689773}{2907626681873310790051616768} a^{9} + \frac{164709816326494696183291585}{1453813340936655395025808384} a^{8} + \frac{647376365987361560218387111}{2907626681873310790051616768} a^{7} - \frac{144262204045703904882940963}{726906670468327697512904192} a^{6} + \frac{161151723758438245967507215}{726906670468327697512904192} a^{5} + \frac{31175235177708695087707699}{181726667617081924378226048} a^{4} - \frac{5347827782462351603926885}{181726667617081924378226048} a^{3} + \frac{5500207603989303655415861}{45431666904270481094556512} a^{2} - \frac{293023014568047646402943}{11357916726067620273639128} a - \frac{675845476137651493267695}{1419739590758452534204891}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11978143602513}{74609822057633792} a^{17} - \frac{29976971569341}{37304911028816896} a^{16} + \frac{415793453734303}{74609822057633792} a^{15} - \frac{710713571392785}{37304911028816896} a^{14} + \frac{6879586266563397}{74609822057633792} a^{13} - \frac{3263500535138257}{18652455514408448} a^{12} + \frac{41924747111947407}{74609822057633792} a^{11} - \frac{47734083028939779}{37304911028816896} a^{10} + \frac{128324784685056701}{74609822057633792} a^{9} - \frac{155646134439642183}{37304911028816896} a^{8} + \frac{436686128753512791}{74609822057633792} a^{7} - \frac{127624973750072423}{18652455514408448} a^{6} + \frac{262718668465992135}{18652455514408448} a^{5} - \frac{50069247771771669}{4663113878602112} a^{4} + \frac{39161496666829331}{4663113878602112} a^{3} - \frac{21554835277888431}{1165778469650528} a^{2} + \frac{2370215554964301}{291444617412632} a + \frac{75676383861303}{36430577176579} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 810773555.0000257 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.999.1, 6.0.26946027.1, 6.0.2994003.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |