Normalized defining polynomial
\( x^{18} - 3 x^{17} + 60 x^{16} - 157 x^{15} + 1116 x^{14} - 1161 x^{13} + 3951 x^{12} + 16026 x^{11} + 7536 x^{10} - 5656 x^{9} + 654144 x^{8} + 635424 x^{7} + 1444480 x^{6} + 14185344 x^{5} + 24462336 x^{4} + 8265216 x^{3} + 41054208 x^{2} + 180725760 x + 207974400 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29585973151813465955360437434322443=-\,3^{21}\cdot 521^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 521$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{3}{16} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{64} a^{10} + \frac{1}{64} a^{9} + \frac{3}{64} a^{7} - \frac{1}{8} a^{6} - \frac{9}{64} a^{5} + \frac{11}{64} a^{4} + \frac{3}{32} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{128} a^{11} - \frac{1}{128} a^{10} - \frac{1}{64} a^{9} - \frac{13}{128} a^{8} + \frac{1}{64} a^{7} - \frac{9}{128} a^{6} - \frac{19}{128} a^{5} - \frac{1}{4} a^{4} + \frac{3}{32} a^{3} - \frac{5}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{15360} a^{12} + \frac{13}{5120} a^{11} + \frac{7}{2560} a^{10} + \frac{199}{15360} a^{9} + \frac{231}{2560} a^{8} - \frac{479}{5120} a^{7} - \frac{299}{15360} a^{6} + \frac{167}{1280} a^{5} + \frac{73}{640} a^{4} - \frac{3}{80} a^{3} + \frac{31}{160} a^{2} + \frac{3}{10} a - \frac{7}{16}$, $\frac{1}{30720} a^{13} - \frac{1}{30720} a^{12} - \frac{13}{5120} a^{11} - \frac{41}{30720} a^{10} - \frac{407}{15360} a^{9} + \frac{1041}{10240} a^{8} - \frac{419}{30720} a^{7} + \frac{731}{7680} a^{6} - \frac{47}{1280} a^{5} + \frac{7}{160} a^{4} + \frac{11}{320} a^{3} - \frac{1}{10} a^{2} - \frac{15}{32} a + \frac{1}{4}$, $\frac{1}{14008320} a^{14} + \frac{217}{14008320} a^{13} + \frac{1}{184320} a^{12} - \frac{51497}{14008320} a^{11} + \frac{1627}{875520} a^{10} - \frac{119501}{14008320} a^{9} - \frac{1105133}{14008320} a^{8} + \frac{679229}{7004160} a^{7} - \frac{151211}{3502080} a^{6} + \frac{4241}{18240} a^{5} + \frac{1867}{9120} a^{4} + \frac{7447}{72960} a^{3} - \frac{36317}{72960} a^{2} + \frac{3229}{36480} a - \frac{1727}{3648}$, $\frac{1}{140083200} a^{15} - \frac{1}{28016640} a^{14} - \frac{793}{70041600} a^{13} - \frac{3617}{140083200} a^{12} + \frac{175103}{70041600} a^{11} - \frac{505949}{140083200} a^{10} - \frac{363623}{140083200} a^{9} + \frac{400549}{8755200} a^{8} + \frac{1693643}{17510400} a^{7} - \frac{2693}{5836800} a^{6} - \frac{14653}{182400} a^{5} + \frac{22963}{729600} a^{4} - \frac{2807}{729600} a^{3} - \frac{4423}{45600} a^{2} - \frac{2893}{18240} a - \frac{277}{1216}$, $\frac{1}{3279067545600} a^{16} - \frac{5821}{3279067545600} a^{15} + \frac{32957}{1639533772800} a^{14} - \frac{53304701}{3279067545600} a^{13} + \frac{4513877}{234219110400} a^{12} - \frac{1032320173}{655813509120} a^{11} - \frac{13185357839}{3279067545600} a^{10} - \frac{2695657787}{819766886400} a^{9} - \frac{9196097599}{163953377280} a^{8} + \frac{1511548581}{22771302400} a^{7} - \frac{10143424087}{204941721600} a^{6} - \frac{473458021}{3415695360} a^{5} + \frac{128395719}{1138565120} a^{4} - \frac{826779439}{4269619200} a^{3} - \frac{143889961}{1423206400} a^{2} + \frac{885023}{14232064} a - \frac{16638719}{42696192}$, $\frac{1}{8158530733631303577108480000} a^{17} + \frac{20072695316577}{181300682969584523935744000} a^{16} - \frac{62602383669015811}{67987756113594196475904000} a^{15} - \frac{82083257525217671417}{8158530733631303577108480000} a^{14} - \frac{782372900605113310261}{58275219525937882693632000} a^{13} + \frac{79490324577131177238619}{8158530733631303577108480000} a^{12} + \frac{21920156422624275342071143}{8158530733631303577108480000} a^{11} + \frac{330259474122986992652759}{163170614672626071542169600} a^{10} - \frac{768723042214065721706029}{70332161496821582561280000} a^{9} - \frac{3920763902264540751698389}{113312926855990327459840000} a^{8} + \frac{1352029291651133873827891}{20396326834078258942771200} a^{7} - \frac{27010838466818225467602793}{254954085425978236784640000} a^{6} + \frac{7893961634042025456593711}{42492347570996372797440000} a^{5} + \frac{197172952563202380453921}{1416411585699879093248000} a^{4} - \frac{1526422495694456643889313}{10623086892749093199360000} a^{3} + \frac{102463413001396967613139}{5311543446374546599680000} a^{2} - \frac{4723604485903891869493}{18315667056463953792000} a - \frac{5383861996471744777}{11208152450674291200}$
Class group and class number
$C_{85}\times C_{170}$, which has order $14450$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14940330.1709 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-1563}) \), 3.1.1563.1 x3, 6.0.3818360547.1, 9.1.4350743102986569.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 521 | Data not computed | ||||||