Normalized defining polynomial
\( x^{18} - 6 x^{15} + 24 x^{12} + 88 x^{9} + 69 x^{6} + 12 x^{3} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2954312706550833698643=-\,3^{45}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{3} - \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{18} a^{2} - \frac{1}{18} a - \frac{1}{18}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{9} - \frac{1}{6} a^{6} - \frac{2}{9} a^{3} + \frac{7}{18}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{10} - \frac{1}{6} a^{7} - \frac{2}{9} a^{4} + \frac{7}{18} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{5}{18} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{18} a - \frac{1}{18}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{9} - \frac{1}{18} a^{6} - \frac{4}{9}$, $\frac{1}{54} a^{16} - \frac{1}{54} a^{15} + \frac{1}{54} a^{13} - \frac{1}{54} a^{12} + \frac{1}{54} a^{10} - \frac{1}{54} a^{9} + \frac{4}{27} a^{7} - \frac{4}{27} a^{6} - \frac{19}{54} a^{4} + \frac{19}{54} a^{3} + \frac{4}{27} a - \frac{4}{27}$, $\frac{1}{54} a^{17} - \frac{1}{54} a^{15} + \frac{1}{54} a^{14} - \frac{1}{54} a^{12} + \frac{1}{54} a^{11} - \frac{1}{54} a^{9} + \frac{4}{27} a^{8} - \frac{4}{27} a^{6} - \frac{19}{54} a^{5} + \frac{19}{54} a^{3} + \frac{4}{27} a^{2} - \frac{4}{27}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{3} a^{15} - \frac{13}{6} a^{12} + \frac{55}{6} a^{9} + \frac{145}{6} a^{6} + \frac{41}{3} a^{3} + \frac{11}{6} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9573.44755541 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 18T22):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $He_3:C_2$ |
| Character table for $He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 6.0.177147.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||