Normalized defining polynomial
\( x^{18} - 9 x^{15} + 36 x^{12} - 53 x^{9} + 27 x^{6} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2954312706550833698643=-\,3^{45}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2071} a^{15} - \frac{393}{2071} a^{12} - \frac{235}{2071} a^{9} - \frac{937}{2071} a^{6} - \frac{519}{2071} a^{3} + \frac{480}{2071}$, $\frac{1}{2071} a^{16} - \frac{393}{2071} a^{13} - \frac{235}{2071} a^{10} - \frac{937}{2071} a^{7} - \frac{519}{2071} a^{4} + \frac{480}{2071} a$, $\frac{1}{2071} a^{17} - \frac{393}{2071} a^{14} - \frac{235}{2071} a^{11} - \frac{937}{2071} a^{8} - \frac{519}{2071} a^{5} + \frac{480}{2071} a^{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{350}{2071} a^{15} - \frac{2935}{2071} a^{12} + \frac{10945}{2071} a^{9} - \frac{13158}{2071} a^{6} + \frac{6811}{2071} a^{3} - \frac{1822}{2071} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23143.3269777 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_9\times S_3$ (as 18T16):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_9\times S_3$ |
| Character table for $C_9\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{9}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||