Normalized defining polynomial
\( x^{18} - 2 x^{17} + 20 x^{16} - 58 x^{15} + 421 x^{14} - 516 x^{13} + 6419 x^{12} - 2572 x^{11} + 71211 x^{10} + 17826 x^{9} + 639262 x^{8} + 466198 x^{7} + 4295158 x^{6} + 3906398 x^{5} + 19859011 x^{4} + 16508326 x^{3} + 53966797 x^{2} + 27726080 x + 60112841 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-295307224547164431964209152000000000=-\,2^{24}\cdot 5^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{7} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{75808807500227248389301534925646880307031731022} a^{17} + \frac{6190244529588368272208644559932961278065211885}{75808807500227248389301534925646880307031731022} a^{16} - \frac{553163017414020020576561072365449309327745361}{12634801250037874731550255820941146717838621837} a^{15} - \frac{14302918053900619869703522650843190307034403}{25269602500075749463100511641882293435677243674} a^{14} + \frac{563274894480557635388061644030164488518519501}{25269602500075749463100511641882293435677243674} a^{13} + \frac{1833569163476856722345196285707261427638646842}{37904403750113624194650767462823440153515865511} a^{12} + \frac{16883062475502177314171022198929798777605924093}{75808807500227248389301534925646880307031731022} a^{11} + \frac{9705545909822479995810527383260752190937555507}{75808807500227248389301534925646880307031731022} a^{10} + \frac{182500609449130336407295726137308849893146674}{37904403750113624194650767462823440153515865511} a^{9} - \frac{28540970394667463336820400599874108801695908821}{75808807500227248389301534925646880307031731022} a^{8} + \frac{3938468621442964521448714377347457032140842647}{37904403750113624194650767462823440153515865511} a^{7} - \frac{18176762021896376877633612426062349906792315400}{37904403750113624194650767462823440153515865511} a^{6} + \frac{5959716885045060038401434685873007348574292463}{12634801250037874731550255820941146717838621837} a^{5} - \frac{3808803750779934568887372197356947559697961283}{37904403750113624194650767462823440153515865511} a^{4} + \frac{14473896072425461242083335319655728918090234543}{37904403750113624194650767462823440153515865511} a^{3} - \frac{4063995251573041515837515839211541474077777797}{25269602500075749463100511641882293435677243674} a^{2} - \frac{5639028063682148387292857963857225687312016280}{12634801250037874731550255820941146717838621837} a + \frac{5628232744228508054152558130775422150867731349}{12634801250037874731550255820941146717838621837}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4238}$, which has order $33904$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.1369.1, 3.3.148.1, 6.0.43808000.1, 6.0.14993288000.2, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |