Normalized defining polynomial
\( x^{18} - 7 x^{17} + 15 x^{16} + 6 x^{15} + 41 x^{14} - 547 x^{13} + 2399 x^{12} - 6459 x^{11} + 19848 x^{10} - 51876 x^{9} + 153844 x^{8} - 309033 x^{7} + 710103 x^{6} - 1068295 x^{5} + 2318748 x^{4} - 2871539 x^{3} + 5252508 x^{2} - 3731965 x + 4399861 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29091207730813357496487416074727531=-\,11^{9}\cdot 37^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(407=11\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{407}(1,·)$, $\chi_{407}(386,·)$, $\chi_{407}(197,·)$, $\chi_{407}(329,·)$, $\chi_{407}(10,·)$, $\chi_{407}(12,·)$, $\chi_{407}(144,·)$, $\chi_{407}(340,·)$, $\chi_{407}(342,·)$, $\chi_{407}(100,·)$, $\chi_{407}(155,·)$, $\chi_{407}(285,·)$, $\chi_{407}(34,·)$, $\chi_{407}(219,·)$, $\chi_{407}(164,·)$, $\chi_{407}(232,·)$, $\chi_{407}(120,·)$, $\chi_{407}(186,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31} a^{15} + \frac{4}{31} a^{14} - \frac{7}{31} a^{13} + \frac{8}{31} a^{12} + \frac{10}{31} a^{11} + \frac{13}{31} a^{10} + \frac{7}{31} a^{9} + \frac{3}{31} a^{8} + \frac{8}{31} a^{7} + \frac{15}{31} a^{6} + \frac{6}{31} a^{5} - \frac{3}{31} a^{4} - \frac{10}{31} a^{3} + \frac{3}{31} a^{2} + \frac{15}{31} a$, $\frac{1}{1333} a^{16} + \frac{11}{1333} a^{15} + \frac{269}{1333} a^{14} - \frac{599}{1333} a^{13} + \frac{66}{1333} a^{12} + \frac{207}{1333} a^{11} - \frac{26}{1333} a^{10} + \frac{21}{1333} a^{9} - \frac{64}{1333} a^{8} + \frac{350}{1333} a^{7} - \frac{261}{1333} a^{6} - \frac{54}{1333} a^{5} - \frac{9}{43} a^{4} + \frac{336}{1333} a^{3} - \frac{57}{1333} a^{2} - \frac{484}{1333} a - \frac{9}{43}$, $\frac{1}{26570325676916631668769417512268693507082739051} a^{17} - \frac{1924168803280280761081044057510712679622977}{26570325676916631668769417512268693507082739051} a^{16} + \frac{235863176984900442622086069713856887733724981}{26570325676916631668769417512268693507082739051} a^{15} - \frac{4518388921776526497532877762083318762674223453}{26570325676916631668769417512268693507082739051} a^{14} - \frac{13144968843490229682962573356192500077483716119}{26570325676916631668769417512268693507082739051} a^{13} + \frac{3659950443341386142510423502079699862349512428}{26570325676916631668769417512268693507082739051} a^{12} + \frac{10838249468852161389847074427857189121393971894}{26570325676916631668769417512268693507082739051} a^{11} - \frac{11469231709694960600194850977337146488849926886}{26570325676916631668769417512268693507082739051} a^{10} + \frac{3804783809920511602092651788346164824085942540}{26570325676916631668769417512268693507082739051} a^{9} + \frac{8220671950369623632889350380937357666655921309}{26570325676916631668769417512268693507082739051} a^{8} - \frac{1583685815565626600805661261829605371000910849}{26570325676916631668769417512268693507082739051} a^{7} + \frac{5367903185939226022547496775788792408040779690}{26570325676916631668769417512268693507082739051} a^{6} + \frac{12574491683064395310237858218290116873841283929}{26570325676916631668769417512268693507082739051} a^{5} - \frac{11335800913258336890973497901301964841773025330}{26570325676916631668769417512268693507082739051} a^{4} - \frac{286951434421776690927180308017202739245653499}{26570325676916631668769417512268693507082739051} a^{3} + \frac{5621340637056493092884443632167565799287688041}{26570325676916631668769417512268693507082739051} a^{2} + \frac{5702081261928695698670366209261627220643281035}{26570325676916631668769417512268693507082739051} a - \frac{186835558682143746543822834913363418390665558}{857107279900536505444174758460280435712346421}$
Class group and class number
$C_{38}\times C_{342}$, which has order $12996$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.310213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.3.1369.1, 6.0.2494508291.2, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | $18$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 37.9.8.1 | $x^{9} - 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |