Normalized defining polynomial
\( x^{18} + 57 x^{16} + 1236 x^{14} + 13444 x^{12} + 82062 x^{10} + 297342 x^{8} + 651252 x^{6} + 843588 x^{4} + 593001 x^{2} + 173889 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2891631487010844893007652585537536=-\,2^{16}\cdot 3^{32}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{4} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{7}{16} a^{2} - \frac{5}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{16} a^{3} - \frac{1}{2} a^{2} + \frac{3}{16} a - \frac{1}{2}$, $\frac{1}{96} a^{12} - \frac{1}{32} a^{8} - \frac{1}{8} a^{7} - \frac{1}{12} a^{6} - \frac{1}{8} a^{5} - \frac{7}{32} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{3}{32}$, $\frac{1}{96} a^{13} - \frac{1}{32} a^{9} - \frac{1}{12} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{11}{32} a - \frac{1}{8}$, $\frac{1}{192} a^{14} - \frac{1}{192} a^{12} - \frac{1}{32} a^{11} + \frac{1}{64} a^{10} + \frac{1}{32} a^{9} + \frac{1}{192} a^{8} + \frac{1}{16} a^{7} - \frac{1}{192} a^{6} + \frac{1}{16} a^{5} - \frac{5}{64} a^{4} + \frac{7}{32} a^{3} - \frac{17}{64} a^{2} + \frac{5}{32} a - \frac{11}{64}$, $\frac{1}{576} a^{15} - \frac{1}{192} a^{13} + \frac{1}{192} a^{11} - \frac{1}{32} a^{10} - \frac{17}{576} a^{9} + \frac{1}{32} a^{8} + \frac{13}{192} a^{7} + \frac{1}{16} a^{6} - \frac{5}{64} a^{5} + \frac{1}{16} a^{4} + \frac{23}{192} a^{3} - \frac{9}{32} a^{2} - \frac{23}{64} a - \frac{11}{32}$, $\frac{1}{645696} a^{16} + \frac{383}{215232} a^{14} + \frac{515}{215232} a^{12} - \frac{1}{32} a^{11} - \frac{17909}{645696} a^{10} + \frac{1}{32} a^{9} - \frac{11021}{215232} a^{8} - \frac{1}{16} a^{7} - \frac{85}{3648} a^{6} - \frac{1}{16} a^{5} - \frac{34315}{215232} a^{4} - \frac{5}{32} a^{3} + \frac{20389}{71744} a^{2} - \frac{7}{32} a + \frac{14191}{35872}$, $\frac{1}{179503488} a^{17} - \frac{1}{1291392} a^{16} - \frac{4607}{9972416} a^{15} + \frac{123}{71744} a^{14} + \frac{26803}{9972416} a^{13} + \frac{101}{71744} a^{12} - \frac{1224679}{89751744} a^{11} + \frac{13999}{645696} a^{10} + \frac{46405}{7479312} a^{9} - \frac{1343}{26904} a^{8} - \frac{35677}{507072} a^{7} - \frac{119}{3648} a^{6} + \frac{1494511}{29917248} a^{5} + \frac{12113}{215232} a^{4} + \frac{405347}{9972416} a^{3} + \frac{7181}{71744} a^{2} - \frac{6068737}{19944832} a + \frac{15337}{143488}$
Class group and class number
$C_{6}\times C_{24}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22177194.2243 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_4$ (as 18T66):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_3:S_4$ |
| Character table for $C_2\times C_3:S_4$ |
Intermediate fields
| 3.3.45684.2, 3.3.45684.1, 3.3.564.1, 3.3.11421.1, 6.0.521756964.1, 9.9.13443473060864064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.6.10.2 | $x^{6} + 9$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.22.67 | $x^{12} + 99 x^{11} + 117 x^{10} - 114 x^{9} - 81 x^{8} + 9 x^{7} - 15 x^{6} + 54 x^{5} - 108 x^{4} + 45 x^{3} - 81 x^{2} - 108 x - 72$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||