Normalized defining polynomial
\( x^{18} - 3 x^{17} + 51 x^{16} - 30 x^{15} + 1581 x^{14} - 3471 x^{13} + 72951 x^{12} - 287883 x^{11} + 2446248 x^{10} - 9084590 x^{9} + 51165147 x^{8} - 163367103 x^{7} + 688224225 x^{6} - 1766926269 x^{5} + 5595461043 x^{4} - 10346104119 x^{3} + 23602542069 x^{2} - 24485234526 x + 36321165287 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-287465843806740094425446907511025310072188928=-\,2^{12}\cdot 3^{30}\cdot 7^{14}\cdot 43^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $295.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{33} a^{16} + \frac{2}{33} a^{15} + \frac{1}{11} a^{14} + \frac{1}{33} a^{13} + \frac{4}{33} a^{12} - \frac{2}{33} a^{10} - \frac{4}{11} a^{9} + \frac{14}{33} a^{8} - \frac{2}{33} a^{7} + \frac{14}{33} a^{6} - \frac{10}{33} a^{5} + \frac{1}{11} a^{4} - \frac{8}{33} a^{3} + \frac{13}{33} a^{2} + \frac{13}{33} a + \frac{1}{3}$, $\frac{1}{40356656028564859650090761881825216660139778784631475885349323} a^{17} - \frac{40944108845885412432832120924003123473481804081968936346121}{13452218676188286550030253960608405553379926261543825295116441} a^{16} + \frac{6446621245015499633800404048232423553052248287022859964024940}{40356656028564859650090761881825216660139778784631475885349323} a^{15} + \frac{3161765658222111554815310438474770966795036597871089978451123}{40356656028564859650090761881825216660139778784631475885349323} a^{14} + \frac{778871704857468510691106465038761503224962330300474835001867}{40356656028564859650090761881825216660139778784631475885349323} a^{13} - \frac{246234539939756520389479022910650316816123849015093057327661}{13452218676188286550030253960608405553379926261543825295116441} a^{12} - \frac{247669172991207549297060987552042977109800305727098453387348}{13452218676188286550030253960608405553379926261543825295116441} a^{11} + \frac{1046852082917447065915816431369770132370150505501453375303159}{40356656028564859650090761881825216660139778784631475885349323} a^{10} + \frac{74950274387858877135714315396242792565691371066682123328961}{1222928970562571504548204905509855050307266023776711390465131} a^{9} - \frac{15103756847975185681643981618516673915889229789774204812058812}{40356656028564859650090761881825216660139778784631475885349323} a^{8} + \frac{6123921906698651911416225688153983613197762852303434637610190}{13452218676188286550030253960608405553379926261543825295116441} a^{7} + \frac{17223655537796448603711042085951612142476186055716204405220399}{40356656028564859650090761881825216660139778784631475885349323} a^{6} + \frac{375436462394577369019544585241388547563143349707127036799521}{13452218676188286550030253960608405553379926261543825295116441} a^{5} + \frac{1386901402030193198739906650155479246517009173793263994995268}{40356656028564859650090761881825216660139778784631475885349323} a^{4} + \frac{475717660284475845054459531127186876299405282823825099139957}{3668786911687714513644614716529565150921798071330134171395393} a^{3} - \frac{1221626558638268300569390892811046564550249723884655045786090}{13452218676188286550030253960608405553379926261543825295116441} a^{2} - \frac{4730170529319776026207884530699426650656607615352640793085831}{13452218676188286550030253960608405553379926261543825295116441} a + \frac{831754248006497054788155166021295790085640206567069095924494}{3668786911687714513644614716529565150921798071330134171395393}$
Class group and class number
$C_{6}\times C_{27232686}$, which has order $163396116$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 3.3.3969.2, 3.3.756.1, 6.0.1252470670227.3, 6.0.45441112752.2, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $43$ | 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |