Normalized defining polynomial
\( x^{18} + 123804 x^{12} + 455035104 x^{6} + 421875000000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-286545080573078051080746349592284832173804522156032=-\,2^{12}\cdot 3^{31}\cdot 7^{12}\cdot 67^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $635.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{36} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3}$, $\frac{1}{900} a^{7} + \frac{1}{6} a^{5} - \frac{29}{75} a$, $\frac{1}{900} a^{8} - \frac{29}{75} a^{2}$, $\frac{1}{3600} a^{9} - \frac{1}{72} a^{6} + \frac{1}{6} a^{4} + \frac{23}{150} a^{3} - \frac{1}{6}$, $\frac{1}{3600} a^{10} - \frac{1}{1800} a^{7} + \frac{1}{6} a^{5} + \frac{23}{150} a^{4} + \frac{29}{150} a$, $\frac{1}{3600} a^{11} - \frac{1}{1800} a^{8} + \frac{23}{150} a^{5} + \frac{29}{150} a^{2}$, $\frac{1}{496562400} a^{12} - \frac{1}{10800} a^{10} - \frac{1}{1800} a^{7} + \frac{391121}{41380200} a^{6} + \frac{1}{6} a^{5} + \frac{26}{225} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{29}{150} a + \frac{29755}{137934}$, $\frac{1}{496562400} a^{13} - \frac{1}{10800} a^{11} - \frac{1}{1800} a^{8} - \frac{22681}{41380200} a^{7} + \frac{26}{225} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} + \frac{29}{150} a^{2} - \frac{1049267}{3448350} a$, $\frac{1}{12414060000} a^{14} - \frac{436483}{1034505000} a^{8} - \frac{1}{4} a^{5} + \frac{1}{6} a^{4} + \frac{38537791}{86208750} a^{2}$, $\frac{1}{620703000000} a^{15} - \frac{1585933}{51725250000} a^{9} - \frac{1}{72} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{330498091}{4310437500} a^{3} + \frac{1}{3}$, $\frac{1}{15517575000000} a^{16} + \frac{78231721}{646565625000} a^{10} - \frac{16106636909}{107760937500} a^{4} - \frac{1}{2} a$, $\frac{1}{1163818125000000} a^{17} - \frac{5949989683}{96984843750000} a^{11} - \frac{1}{10800} a^{9} - \frac{1}{1800} a^{8} - \frac{1}{72} a^{6} - \frac{1105210511909}{8082070312500} a^{5} + \frac{1}{6} a^{4} - \frac{23}{450} a^{3} - \frac{23}{75} a^{2} + \frac{1}{3} a - \frac{1}{6}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{6}\times C_{36}\times C_{36}\times C_{36}\times C_{108}$, which has order $2176782336$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{22989000000} a^{15} - \frac{3947}{718406250} a^{9} - \frac{14461773}{478937500} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1305258438.9061162 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.23755788.2 x3, 3.3.17816841.1, 6.0.1693012390502832.3, 6.0.952319469657843.1, 6.0.69271877808.3 x2, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $67$ | 67.9.6.1 | $x^{9} + 3216 x^{6} + 3443063 x^{3} + 1231925248$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 67.9.6.1 | $x^{9} + 3216 x^{6} + 3443063 x^{3} + 1231925248$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |