Normalized defining polynomial
\( x^{18} + 60 x^{12} - 272 x^{9} + 26244 x^{6} + 69984 x^{3} + 78732 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-286348061945337113939091849216=-\,2^{16}\cdot 3^{32}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{12} a^{10} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{36} a^{11} + \frac{1}{6} a^{5} - \frac{1}{18} a^{2}$, $\frac{1}{108} a^{12} + \frac{1}{18} a^{6} - \frac{1}{54} a^{3}$, $\frac{1}{324} a^{13} + \frac{1}{54} a^{7} + \frac{53}{162} a^{4} + \frac{1}{3} a$, $\frac{1}{2916} a^{14} - \frac{1}{972} a^{13} + \frac{1}{324} a^{12} + \frac{1}{108} a^{11} - \frac{1}{36} a^{10} - \frac{71}{486} a^{8} + \frac{17}{162} a^{7} + \frac{1}{54} a^{6} + \frac{94}{729} a^{5} - \frac{13}{243} a^{4} + \frac{53}{162} a^{3} + \frac{17}{54} a^{2} - \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{22483033596} a^{15} - \frac{2851675}{832704948} a^{12} + \frac{33758299}{3747172266} a^{9} + \frac{133162069}{5620758399} a^{6} + \frac{118826395}{416352474} a^{3} + \frac{3403633}{7710231}$, $\frac{1}{67449100788} a^{16} - \frac{2851675}{2498114844} a^{13} + \frac{33758299}{11241516798} a^{10} + \frac{133162069}{16862275197} a^{7} - \frac{297526079}{1249057422} a^{4} - \frac{4306598}{23130693} a$, $\frac{1}{202347302364} a^{17} - \frac{46933}{1249057422} a^{14} - \frac{1}{972} a^{13} + \frac{1}{324} a^{12} + \frac{692045309}{67449100788} a^{11} - \frac{1}{36} a^{10} + \frac{7968844907}{101173651182} a^{8} + \frac{17}{162} a^{7} + \frac{1}{54} a^{6} + \frac{200666957}{1249057422} a^{5} - \frac{13}{243} a^{4} + \frac{53}{162} a^{3} + \frac{65919037}{138784158} a^{2} - \frac{5}{18} a + \frac{1}{3}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24719655.037054747 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.108.1, 6.0.15524784.3, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | R | $18$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ |
| 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |