Normalized defining polynomial
\( x^{18} - 7 x^{17} - 32 x^{16} + 408 x^{15} - 48 x^{14} - 10860 x^{13} + 35022 x^{12} + 55770 x^{11} - 448329 x^{10} - 67901 x^{9} + 6180610 x^{8} - 19725330 x^{7} + 27806472 x^{6} - 45713808 x^{5} + 298949568 x^{4} - 1193707296 x^{3} + 2792992512 x^{2} - 3598002432 x + 2600310784 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2861629121862889270656120891466827264000000000=-\,2^{18}\cdot 3^{9}\cdot 5^{9}\cdot 127^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $335.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{8} + \frac{3}{32} a^{7} + \frac{5}{64} a^{6} + \frac{3}{16} a^{5} - \frac{7}{32} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} - \frac{3}{64} a^{9} + \frac{5}{64} a^{7} + \frac{3}{32} a^{6} + \frac{7}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{3}{128} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{3}{128} a^{8} + \frac{5}{128} a^{7} + \frac{1}{16} a^{6} - \frac{15}{64} a^{5} + \frac{3}{32} a^{4} + \frac{3}{16} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{128} a^{15} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{64} a^{9} + \frac{3}{128} a^{7} + \frac{3}{32} a^{6} + \frac{5}{64} a^{5} + \frac{3}{16} a^{4} - \frac{1}{16} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{117248} a^{16} - \frac{3}{916} a^{15} - \frac{33}{58624} a^{14} + \frac{289}{58624} a^{13} - \frac{279}{58624} a^{12} - \frac{409}{58624} a^{11} - \frac{5}{29312} a^{10} - \frac{2199}{58624} a^{9} + \frac{2077}{117248} a^{8} + \frac{4733}{58624} a^{7} - \frac{4737}{58624} a^{6} - \frac{2219}{29312} a^{5} - \frac{1043}{14656} a^{4} + \frac{2365}{7328} a^{3} - \frac{28}{229} a^{2} + \frac{39}{916} a + \frac{111}{229}$, $\frac{1}{3166716171867992462462227223900066365487643447808} a^{17} - \frac{1097835104517401007212462756334652991894735}{3166716171867992462462227223900066365487643447808} a^{16} - \frac{5678127202118143576614615130421771088326966107}{1583358085933996231231113611950033182743821723904} a^{15} - \frac{132017182567866722209801897123529057955134745}{791679042966998115615556805975016591371910861952} a^{14} + \frac{1253297960898426073900368644199290684986000665}{395839521483499057807778402987508295685955430976} a^{13} + \frac{4639352270216812604061810950353392103832805659}{791679042966998115615556805975016591371910861952} a^{12} - \frac{19265702041946538069077897386698443682689841089}{1583358085933996231231113611950033182743821723904} a^{11} + \frac{13313520176077203721663875175092044386490239413}{1583358085933996231231113611950033182743821723904} a^{10} - \frac{197762920782584969124557257347536202853642523605}{3166716171867992462462227223900066365487643447808} a^{9} - \frac{192917526881833782358174433611975808440324440645}{3166716171867992462462227223900066365487643447808} a^{8} + \frac{41265397991878554828804999185838336973489490997}{395839521483499057807778402987508295685955430976} a^{7} + \frac{174292121491030956094589978944788099847709230805}{1583358085933996231231113611950033182743821723904} a^{6} + \frac{187226569565702393547781098440653144329799492179}{791679042966998115615556805975016591371910861952} a^{5} - \frac{63202975902758080935535812436441472294775496369}{395839521483499057807778402987508295685955430976} a^{4} + \frac{18392290709043567146692177262047697869739069549}{197919760741749528903889201493754147842977715488} a^{3} + \frac{4997161616748712878596038205121791403911864291}{24739970092718691112986150186719268480372214436} a^{2} + \frac{1714594392590448030260880287916198849201367271}{24739970092718691112986150186719268480372214436} a - \frac{1431887840044262309351084217245800457346678507}{6184992523179672778246537546679817120093053609}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{22386910}$, which has order $895476400$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5546046730.2947445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.16129.1, 3.3.1016.1, 6.0.3483864000.3, 6.0.877988163375.2, 9.9.272832440404737536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $127$ | 127.6.4.1 | $x^{6} + 1016 x^{3} + 435483$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 127.12.10.1 | $x^{12} - 1270 x^{6} + 11758041$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |