Normalized defining polynomial
\( x^{18} + 21 x^{16} - 35 x^{15} + 189 x^{14} - 336 x^{13} + 1132 x^{12} - 1764 x^{11} + 4200 x^{10} - 6552 x^{9} + 10080 x^{8} - 12180 x^{7} + 13756 x^{6} - 11844 x^{5} + 10143 x^{4} - 5684 x^{3} + 3087 x^{2} - 1029 x + 343 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2782483037193954337646484375=-\,3^{24}\cdot 5^{12}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{14} a^{12} - \frac{1}{7} a^{11} + \frac{1}{14} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{6} - \frac{5}{14} a^{5} + \frac{3}{7} a^{3} - \frac{5}{14} a^{2}$, $\frac{1}{14} a^{13} + \frac{3}{14} a^{11} + \frac{1}{14} a^{10} + \frac{3}{14} a^{8} - \frac{1}{14} a^{7} - \frac{1}{2} a^{6} + \frac{2}{7} a^{5} - \frac{1}{14} a^{4} - \frac{1}{2} a^{3} + \frac{2}{7} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{28} a^{14} - \frac{1}{14} a^{8} + \frac{2}{7} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{3780} a^{15} - \frac{1}{70} a^{14} - \frac{1}{126} a^{13} + \frac{43}{1890} a^{12} + \frac{1}{210} a^{11} + \frac{1}{21} a^{10} - \frac{1}{30} a^{9} - \frac{1}{30} a^{8} - \frac{22}{315} a^{7} + \frac{31}{210} a^{6} + \frac{41}{210} a^{5} + \frac{43}{126} a^{4} + \frac{271}{945} a^{3} + \frac{1}{70} a^{2} + \frac{89}{180} a - \frac{59}{270}$, $\frac{1}{371129891580} a^{16} + \frac{604889}{17672851980} a^{15} - \frac{252900157}{17672851980} a^{14} + \frac{345558272}{13254638985} a^{13} - \frac{82649767}{8836425990} a^{12} + \frac{35990471}{210391095} a^{11} + \frac{166064869}{10309163655} a^{10} + \frac{78272638}{1472737665} a^{9} - \frac{26726758}{4418212995} a^{8} + \frac{33127201}{490912555} a^{7} - \frac{97416737}{210391095} a^{6} - \frac{753414043}{8836425990} a^{5} + \frac{36890912746}{92782472895} a^{4} - \frac{456323356}{4418212995} a^{3} - \frac{800345989}{17672851980} a^{2} - \frac{858100261}{7574079420} a - \frac{1117047509}{2524693140}$, $\frac{1}{45648976664340} a^{17} + \frac{17}{22824488332170} a^{16} - \frac{78318769}{3260641190310} a^{15} + \frac{115942987511}{6521282380620} a^{14} - \frac{10123866791}{3260641190310} a^{13} + \frac{4616932708}{326064119031} a^{12} - \frac{312661603963}{1268027129565} a^{11} + \frac{36525293821}{1268027129565} a^{10} - \frac{25915580632}{543440198385} a^{9} - \frac{54165967117}{217376079354} a^{8} + \frac{157979728579}{1086880396770} a^{7} - \frac{260775538789}{1086880396770} a^{6} - \frac{552118063712}{11412244166085} a^{5} - \frac{4380424858826}{11412244166085} a^{4} + \frac{310998794201}{1304256476124} a^{3} + \frac{193890942005}{652128238062} a^{2} - \frac{84991924234}{232902942165} a - \frac{312183096259}{931611768660}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1284239.07252 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.14175.1 x3, 3.1.567.1 x3, 3.1.14175.2 x3, 3.1.175.1 x3, 6.0.1406514375.2, 6.0.2250423.3, 6.0.1406514375.1, 6.0.214375.1, 9.1.19937341265625.3 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |