Normalized defining polynomial
\( x^{18} - 6 x^{17} + 183 x^{16} - 914 x^{15} + 14145 x^{14} - 58926 x^{13} + 598896 x^{12} - 2062338 x^{11} + 15170424 x^{10} - 42497460 x^{9} + 238717983 x^{8} - 530370468 x^{7} + 2338835099 x^{6} - 3934442502 x^{5} + 14201203935 x^{4} - 16785090334 x^{3} + 54409682934 x^{2} - 36356971812 x + 95320292761 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-27668797159880354103659593728000000000=-\,2^{27}\cdot 3^{27}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2520=2^{3}\cdot 3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2520}(1,·)$, $\chi_{2520}(389,·)$, $\chi_{2520}(961,·)$, $\chi_{2520}(1801,·)$, $\chi_{2520}(1229,·)$, $\chi_{2520}(1681,·)$, $\chi_{2520}(2069,·)$, $\chi_{2520}(121,·)$, $\chi_{2520}(29,·)$, $\chi_{2520}(869,·)$, $\chi_{2520}(1829,·)$, $\chi_{2520}(361,·)$, $\chi_{2520}(1709,·)$, $\chi_{2520}(989,·)$, $\chi_{2520}(1201,·)$, $\chi_{2520}(841,·)$, $\chi_{2520}(2041,·)$, $\chi_{2520}(149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{10}$, $\frac{1}{10} a^{7} + \frac{3}{10} a^{5} + \frac{2}{5} a^{3} + \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{10} a^{8} - \frac{2}{5} a^{5} + \frac{3}{10} a^{4} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5} a - \frac{3}{10}$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{5} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{10} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{100} a^{12} - \frac{1}{25} a^{11} - \frac{1}{50} a^{10} + \frac{1}{25} a^{9} - \frac{1}{100} a^{8} - \frac{1}{50} a^{7} + \frac{1}{50} a^{6} + \frac{17}{50} a^{5} - \frac{11}{25} a^{3} - \frac{3}{10} a^{2} + \frac{11}{50} a - \frac{49}{100}$, $\frac{1}{100} a^{13} + \frac{1}{50} a^{11} - \frac{1}{25} a^{10} - \frac{1}{20} a^{9} + \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{1}{50} a^{6} + \frac{13}{50} a^{5} + \frac{23}{50} a^{4} + \frac{7}{50} a^{3} + \frac{8}{25} a^{2} + \frac{49}{100} a - \frac{13}{50}$, $\frac{1}{100} a^{14} + \frac{1}{25} a^{11} - \frac{1}{100} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} - \frac{1}{25} a^{7} + \frac{1}{50} a^{6} + \frac{7}{25} a^{5} + \frac{11}{25} a^{4} + \frac{2}{5} a^{3} - \frac{1}{100} a^{2} + \frac{2}{5} a - \frac{3}{25}$, $\frac{1}{100} a^{15} - \frac{1}{20} a^{11} + \frac{1}{25} a^{10} - \frac{1}{50} a^{5} - \frac{2}{5} a^{4} + \frac{3}{20} a^{3} - \frac{1}{5} a^{2} - \frac{3}{10} a + \frac{9}{25}$, $\frac{1}{13420503954857471252315724100} a^{16} - \frac{32246359055469224035974721}{13420503954857471252315724100} a^{15} - \frac{37151142828879079652561017}{13420503954857471252315724100} a^{14} + \frac{6636961623589406911354611}{2684100790971494250463144820} a^{13} - \frac{2359513286220642031812951}{536820158194298850092628964} a^{12} - \frac{340228545542913681801655739}{13420503954857471252315724100} a^{11} + \frac{526682763078914085063998973}{13420503954857471252315724100} a^{10} - \frac{481603885906596864440899107}{13420503954857471252315724100} a^{9} - \frac{161382475566979588572473671}{6710251977428735626157862050} a^{8} - \frac{50189266026824469869142751}{6710251977428735626157862050} a^{7} + \frac{31509123846062094783619011}{3355125988714367813078931025} a^{6} - \frac{2116785119726730239765531277}{6710251977428735626157862050} a^{5} - \frac{4267740684871288590855921813}{13420503954857471252315724100} a^{4} + \frac{64333433240634610412757657}{536820158194298850092628964} a^{3} - \frac{1193440601386627742759192413}{13420503954857471252315724100} a^{2} - \frac{3178033677187033371816231479}{13420503954857471252315724100} a + \frac{1292553393922368841783956559}{6710251977428735626157862050}$, $\frac{1}{240533032263247648589055920816443759724536900} a^{17} - \frac{6379957445220123}{240533032263247648589055920816443759724536900} a^{16} - \frac{41667051662292801024800940034996209582493}{240533032263247648589055920816443759724536900} a^{15} + \frac{995550219157999751387280744236148973866173}{240533032263247648589055920816443759724536900} a^{14} - \frac{553539748046867680633852165643425835872961}{240533032263247648589055920816443759724536900} a^{13} - \frac{586024517609845638659024443682416358781459}{240533032263247648589055920816443759724536900} a^{12} - \frac{1915634139929677468290274037451957250365071}{48106606452649529717811184163288751944907380} a^{11} + \frac{2306211972870017071942655900967319329504347}{48106606452649529717811184163288751944907380} a^{10} - \frac{1822523221537111546658609786751945711412717}{120266516131623824294527960408221879862268450} a^{9} + \frac{1788775222917648341301452932143859701425881}{120266516131623824294527960408221879862268450} a^{8} - \frac{3481714871499429722329335206945841799820621}{120266516131623824294527960408221879862268450} a^{7} + \frac{1518217962607749160620958857070264933439646}{60133258065811912147263980204110939931134225} a^{6} - \frac{44867745607477856097604816972033645406437653}{240533032263247648589055920816443759724536900} a^{5} - \frac{33272218549388244073641145890259601239125849}{240533032263247648589055920816443759724536900} a^{4} + \frac{109642973937733492787083256584564310638302853}{240533032263247648589055920816443759724536900} a^{3} - \frac{102731734100214737076627902677011208579352539}{240533032263247648589055920816443759724536900} a^{2} + \frac{25164065772212173474305230469010337754927418}{60133258065811912147263980204110939931134225} a - \frac{30568547640677988721781982864284048824834823}{120266516131623824294527960408221879862268450}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{38}\times C_{3458}$, which has order $2102464$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-30}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, \(\Q(\zeta_{7})^+\), 3.3.3969.2, 6.0.1259712000.1, 6.0.3024568512000.19, 6.0.4148928000.4, 6.0.3024568512000.20, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||