Normalized defining polynomial
\( x^{18} - 9 x^{17} - 114 x^{16} + 598 x^{15} + 10995 x^{14} - 5745 x^{13} - 553500 x^{12} - 1804737 x^{11} + 14666778 x^{10} + 115321025 x^{9} + 72948210 x^{8} - 2489222517 x^{7} - 11063580650 x^{6} + 4354104129 x^{5} + 234790211235 x^{4} + 1131134296912 x^{3} + 2978310223176 x^{2} + 4545989325489 x + 3552952831147 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-275644570682799017504631978444753999120934291206144=-\,2^{12}\cdot 3^{24}\cdot 31^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $634.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} - \frac{6}{37} a^{11} - \frac{11}{37} a^{10} - \frac{1}{37} a^{9} + \frac{12}{37} a^{8} + \frac{3}{37} a^{7} - \frac{2}{37} a^{6} - \frac{13}{37} a^{5} - \frac{9}{37} a^{4} + \frac{6}{37} a^{3} + \frac{10}{37} a^{2} + \frac{10}{37} a - \frac{1}{37}$, $\frac{1}{37} a^{13} - \frac{10}{37} a^{11} + \frac{7}{37} a^{10} + \frac{6}{37} a^{9} + \frac{1}{37} a^{8} + \frac{16}{37} a^{7} + \frac{12}{37} a^{6} - \frac{13}{37} a^{5} - \frac{11}{37} a^{4} + \frac{9}{37} a^{3} - \frac{4}{37} a^{2} - \frac{15}{37} a - \frac{6}{37}$, $\frac{1}{37} a^{14} - \frac{16}{37} a^{11} + \frac{7}{37} a^{10} - \frac{9}{37} a^{9} - \frac{12}{37} a^{8} + \frac{5}{37} a^{7} + \frac{4}{37} a^{6} + \frac{7}{37} a^{5} - \frac{7}{37} a^{4} - \frac{18}{37} a^{3} + \frac{11}{37} a^{2} - \frac{17}{37} a - \frac{10}{37}$, $\frac{1}{37} a^{15} - \frac{15}{37} a^{11} + \frac{9}{37} a^{9} + \frac{12}{37} a^{8} + \frac{15}{37} a^{7} + \frac{12}{37} a^{6} + \frac{7}{37} a^{5} - \frac{14}{37} a^{4} - \frac{4}{37} a^{3} - \frac{5}{37} a^{2} + \frac{2}{37} a - \frac{16}{37}$, $\frac{1}{8621} a^{16} - \frac{70}{8621} a^{15} - \frac{44}{8621} a^{14} - \frac{26}{8621} a^{13} + \frac{30}{8621} a^{12} - \frac{2992}{8621} a^{11} + \frac{467}{8621} a^{10} - \frac{2532}{8621} a^{9} - \frac{2003}{8621} a^{8} - \frac{3352}{8621} a^{7} + \frac{3399}{8621} a^{6} - \frac{2095}{8621} a^{5} + \frac{2608}{8621} a^{4} + \frac{548}{8621} a^{3} - \frac{1539}{8621} a^{2} - \frac{788}{8621} a + \frac{3891}{8621}$, $\frac{1}{121118658768186840555646329914141735295412630640178177205766532847} a^{17} - \frac{5113596805942517297821384901016048766093739364858501554668772}{121118658768186840555646329914141735295412630640178177205766532847} a^{16} - \frac{17720254401392118431580747408070684766956708420575399320568883}{121118658768186840555646329914141735295412630640178177205766532847} a^{15} + \frac{1566027240302620452571116830748871415596366818010600538870543442}{121118658768186840555646329914141735295412630640178177205766532847} a^{14} - \frac{1394932679213827851428503917035176228040329941407653182180229277}{121118658768186840555646329914141735295412630640178177205766532847} a^{13} - \frac{131435588077501887808358274024072830242042494806004299078294170}{121118658768186840555646329914141735295412630640178177205766532847} a^{12} - \frac{41491869334740214181764200397783139196557982021525917999830990177}{121118658768186840555646329914141735295412630640178177205766532847} a^{11} + \frac{51360087610169387690856768999397341523786650507958841058868222997}{121118658768186840555646329914141735295412630640178177205766532847} a^{10} + \frac{60332189796364069087746958708695526563502257576743979546965958355}{121118658768186840555646329914141735295412630640178177205766532847} a^{9} - \frac{38380352986618992403174036407890160904243437648014444008550429473}{121118658768186840555646329914141735295412630640178177205766532847} a^{8} - \frac{46514605899308366909062991154221862659306654755228600194761991924}{121118658768186840555646329914141735295412630640178177205766532847} a^{7} + \frac{46155608317631954523165995300216224288140283530011510329055897048}{121118658768186840555646329914141735295412630640178177205766532847} a^{6} - \frac{13649345129078346178991821416407029663431719218293568236396626399}{121118658768186840555646329914141735295412630640178177205766532847} a^{5} + \frac{29656722692395274176449742139955669990270480564660736334831611088}{121118658768186840555646329914141735295412630640178177205766532847} a^{4} - \frac{33294346469521572442689008679156828456850245107207901544269019197}{121118658768186840555646329914141735295412630640178177205766532847} a^{3} + \frac{444376375585480430705371900553930359753860787343192008339644382}{121118658768186840555646329914141735295412630640178177205766532847} a^{2} + \frac{57184112335512870993648100973093319448808186854513717267388151296}{121118658768186840555646329914141735295412630640178177205766532847} a + \frac{10734450706379052784706648665387298248630441008240316386700039403}{121118658768186840555646329914141735295412630640178177205766532847}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{117602388}$, which has order $3175264476$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118546543.87559307 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.148.1, 3.3.110889.1, 6.0.652542064.2, 6.0.366321168232911.1, 9.9.3228844269788073792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |