Normalized defining polynomial
\( x^{18} - 2 x^{17} - 140 x^{16} - 50 x^{15} + 9349 x^{14} + 23272 x^{13} - 295241 x^{12} - 1389596 x^{11} + 3702763 x^{10} + 37744642 x^{9} + 56319898 x^{8} - 328077626 x^{7} - 1540727786 x^{6} - 146306990 x^{5} + 20797548331 x^{4} + 87252708550 x^{3} + 210708993481 x^{2} + 282909781276 x + 245644707669 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-275262807777657994100187725010026740088832000000000=-\,2^{24}\cdot 3^{6}\cdot 5^{9}\cdot 271^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $634.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 271$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{8} + \frac{1}{3} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{54} a^{9} - \frac{1}{54} a^{7} + \frac{1}{18} a^{6} + \frac{1}{18} a^{5} + \frac{1}{27} a^{3} + \frac{1}{6} a^{2} - \frac{5}{54} a + \frac{5}{18}$, $\frac{1}{54} a^{10} - \frac{1}{54} a^{8} - \frac{1}{18} a^{7} + \frac{1}{18} a^{6} - \frac{8}{27} a^{4} - \frac{1}{6} a^{3} - \frac{23}{54} a^{2} - \frac{5}{18} a - \frac{1}{3}$, $\frac{1}{162} a^{11} + \frac{1}{162} a^{9} + \frac{1}{54} a^{8} + \frac{1}{162} a^{7} + \frac{1}{27} a^{6} + \frac{4}{81} a^{5} - \frac{5}{18} a^{4} + \frac{53}{162} a^{3} - \frac{7}{54} a^{2} - \frac{32}{81} a - \frac{4}{27}$, $\frac{1}{162} a^{12} + \frac{1}{162} a^{10} + \frac{1}{162} a^{8} - \frac{1}{18} a^{7} - \frac{1}{162} a^{6} - \frac{1}{162} a^{4} - \frac{1}{6} a^{3} + \frac{17}{162} a^{2} - \frac{5}{18} a + \frac{7}{18}$, $\frac{1}{1458} a^{13} - \frac{1}{486} a^{11} + \frac{2}{243} a^{10} + \frac{1}{243} a^{9} + \frac{13}{486} a^{8} + \frac{38}{729} a^{7} - \frac{5}{486} a^{6} + \frac{35}{243} a^{5} - \frac{157}{486} a^{4} - \frac{221}{486} a^{3} + \frac{7}{243} a^{2} + \frac{308}{729} a - \frac{31}{486}$, $\frac{1}{1458} a^{14} - \frac{1}{486} a^{12} + \frac{1}{486} a^{11} + \frac{1}{243} a^{10} + \frac{1}{486} a^{9} + \frac{49}{1458} a^{8} + \frac{1}{486} a^{7} + \frac{25}{486} a^{6} - \frac{23}{243} a^{5} - \frac{43}{243} a^{4} - \frac{1}{486} a^{3} + \frac{281}{729} a^{2} - \frac{59}{243} a - \frac{7}{54}$, $\frac{1}{4374} a^{15} - \frac{1}{4374} a^{13} + \frac{2}{729} a^{12} - \frac{1}{243} a^{10} + \frac{7}{4374} a^{9} + \frac{8}{243} a^{8} + \frac{100}{2187} a^{7} + \frac{157}{1458} a^{6} - \frac{1}{9} a^{5} - \frac{59}{243} a^{4} - \frac{1601}{4374} a^{3} - \frac{199}{486} a^{2} + \frac{211}{2187} a - \frac{467}{1458}$, $\frac{1}{56862} a^{16} - \frac{1}{18954} a^{15} + \frac{17}{56862} a^{14} - \frac{1}{6318} a^{13} - \frac{2}{3159} a^{12} + \frac{2}{1053} a^{11} + \frac{421}{56862} a^{10} + \frac{5}{1458} a^{9} - \frac{116}{28431} a^{8} - \frac{175}{6318} a^{7} + \frac{1}{234} a^{6} + \frac{22}{351} a^{5} - \frac{22913}{56862} a^{4} + \frac{1498}{9477} a^{3} + \frac{23111}{56862} a^{2} + \frac{47}{486} a - \frac{635}{6318}$, $\frac{1}{75990708950021984042852281670031701843186230709460881417202} a^{17} + \frac{2125932385922053666819481848586116713595754783289187}{12665118158336997340475380278338616973864371784910146902867} a^{16} - \frac{2566241775456137558139285285616813922557691710615377959}{75990708950021984042852281670031701843186230709460881417202} a^{15} - \frac{93711548230392269289597791266722476883503844048296929}{436728212356448184154323457873745412891874889134832651823} a^{14} - \frac{7018242228929480022665911625916044887346718241176981037}{37995354475010992021426140835015850921593115354730440708601} a^{13} - \frac{35225204669867802126497599806175699182761153395022677346}{12665118158336997340475380278338616973864371784910146902867} a^{12} + \frac{129545479339740453500539038667934588157365361299165987173}{75990708950021984042852281670031701843186230709460881417202} a^{11} + \frac{172554273319435682453505322958312223871226383230012829}{45971390774362966753086679776183727672828935698403437034} a^{10} + \frac{258112966786828162890784796025860204912221585984808515909}{75990708950021984042852281670031701843186230709460881417202} a^{9} - \frac{504240956534943111340807995689781935213318379867051863465}{12665118158336997340475380278338616973864371784910146902867} a^{8} + \frac{96397083093704110995286523724729416156967444479281266989}{1999755498684789053759270570263992153768058702880549510979} a^{7} - \frac{367379213354073839362888590594805200398411428381844703152}{12665118158336997340475380278338616973864371784910146902867} a^{6} + \frac{5022026173699257542434496726821033407694606942852688439503}{37995354475010992021426140835015850921593115354730440708601} a^{5} + \frac{1954303519378047208692217882342182506521641326328490769045}{25330236316673994680950760556677233947728743569820293805734} a^{4} - \frac{29781981696196956816813072700533221488579526278337290469645}{75990708950021984042852281670031701843186230709460881417202} a^{3} + \frac{4744354443959166015096908151798435335504808641208238061117}{25330236316673994680950760556677233947728743569820293805734} a^{2} - \frac{8924867507691742881551102802186554057168113837497078757807}{37995354475010992021426140835015850921593115354730440708601} a + \frac{250708806402920946778171410040963176163800672412995215185}{873456424712896368308646915747490825783749778269665303646}$
Class group and class number
$C_{86}\times C_{21244580}$, which has order $1827033880$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48005482170.92574 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.73441.1, 3.3.3252.1, 6.0.21151008000.1, 6.0.43148643848000.1, 9.9.185493533505098902848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 271 | Data not computed | ||||||