Normalized defining polynomial
\( x^{18} + 99 x^{16} + 4815 x^{14} + 148083 x^{12} + 3144492 x^{10} - 2 x^{9} + 47554038 x^{8} + 954 x^{7} + 510655881 x^{6} - 47556 x^{5} + 3750130377 x^{4} + 482646 x^{3} + 17095168548 x^{2} - 838908 x + 36926027009 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2737570425013469092239722803000246272=-\,2^{18}\cdot 3^{44}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1404=2^{2}\cdot 3^{3}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1404}(1,·)$, $\chi_{1404}(259,·)$, $\chi_{1404}(1093,·)$, $\chi_{1404}(1351,·)$, $\chi_{1404}(781,·)$, $\chi_{1404}(1039,·)$, $\chi_{1404}(469,·)$, $\chi_{1404}(727,·)$, $\chi_{1404}(157,·)$, $\chi_{1404}(415,·)$, $\chi_{1404}(1249,·)$, $\chi_{1404}(103,·)$, $\chi_{1404}(937,·)$, $\chi_{1404}(1195,·)$, $\chi_{1404}(625,·)$, $\chi_{1404}(883,·)$, $\chi_{1404}(313,·)$, $\chi_{1404}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1062294642302073588506179226288782531663820541785786909138901649} a^{17} - \frac{416414629074629946612192311192678509202343321232147383467306677}{1062294642302073588506179226288782531663820541785786909138901649} a^{16} + \frac{452833945919686128177834994367638780354741181289205684536964547}{1062294642302073588506179226288782531663820541785786909138901649} a^{15} - \frac{242092265188370350951257716713234828396031500785842786992672536}{1062294642302073588506179226288782531663820541785786909138901649} a^{14} - \frac{416995958725678371215422868414649552353401915046315099842102440}{1062294642302073588506179226288782531663820541785786909138901649} a^{13} - \frac{14513113679613117722270868321713882395352347222271993455274040}{1062294642302073588506179226288782531663820541785786909138901649} a^{12} + \frac{174626230342277785106365276456908107943483276101655464181622858}{1062294642302073588506179226288782531663820541785786909138901649} a^{11} + \frac{199561901505051650592787656950483523765453653917541861846380962}{1062294642302073588506179226288782531663820541785786909138901649} a^{10} + \frac{206601020310028225912701895044852370501659087256314696104797874}{1062294642302073588506179226288782531663820541785786909138901649} a^{9} + \frac{200250060368891245824454764934414176141945225739889066102064453}{1062294642302073588506179226288782531663820541785786909138901649} a^{8} - \frac{225019326747450235484192310898057190176408444503724641317231205}{1062294642302073588506179226288782531663820541785786909138901649} a^{7} - \frac{436882142861656306602527332965699106668839400965391773354976917}{1062294642302073588506179226288782531663820541785786909138901649} a^{6} + \frac{3694612735189795797865081927149530547250034943944809583930089}{20043295137774973368041117477146840220072085694071451115828333} a^{5} + \frac{86078619589567561876791563337865544770925072692502681507036184}{1062294642302073588506179226288782531663820541785786909138901649} a^{4} + \frac{70066963904657930427003731059733794537555930803082972543054950}{1062294642302073588506179226288782531663820541785786909138901649} a^{3} + \frac{15790235813039757803486676501885394023739000180496829905644428}{1062294642302073588506179226288782531663820541785786909138901649} a^{2} - \frac{200967772844849665186804218111266462280673762180933156322631273}{1062294642302073588506179226288782531663820541785786909138901649} a - \frac{2605848399219595060563058299946663190664140389607461712963449}{6517145044797997475498032063121365224931414366783968767723323}$
Class group and class number
$C_{1163474}$, which has order $1163474$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), \(\Q(\zeta_{9})^+\), 6.0.922529088.2, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||