Normalized defining polynomial
\( x^{18} - 4 x^{17} + 2 x^{16} + 27 x^{15} - 41 x^{14} - 47 x^{13} + 244 x^{12} - 269 x^{11} + 208 x^{10} - 186 x^{9} + 578 x^{8} - 1066 x^{7} + 1660 x^{6} - 1326 x^{5} + 1065 x^{4} - 423 x^{3} + 360 x^{2} - 135 x + 81 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2732160577820469872382279=-\,3^{9}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{1}{18} a^{6} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{12} + \frac{1}{27} a^{11} + \frac{1}{54} a^{10} - \frac{1}{18} a^{9} + \frac{1}{18} a^{8} + \frac{1}{27} a^{7} + \frac{7}{54} a^{6} + \frac{5}{27} a^{5} - \frac{2}{27} a^{4} - \frac{1}{18} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{54} a^{14} + \frac{1}{54} a^{12} - \frac{1}{18} a^{11} - \frac{1}{27} a^{10} + \frac{5}{54} a^{8} - \frac{1}{6} a^{7} - \frac{1}{54} a^{6} - \frac{4}{9} a^{5} - \frac{25}{54} a^{4} - \frac{1}{6} a^{3} - \frac{1}{9} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{324} a^{15} - \frac{1}{162} a^{14} - \frac{1}{108} a^{13} - \frac{1}{81} a^{12} - \frac{4}{81} a^{11} - \frac{1}{18} a^{10} + \frac{2}{81} a^{9} + \frac{5}{324} a^{8} + \frac{25}{324} a^{6} + \frac{85}{324} a^{5} + \frac{37}{108} a^{4} + \frac{1}{54} a^{3} - \frac{4}{9} a^{2} - \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{324} a^{16} - \frac{1}{324} a^{14} + \frac{1}{162} a^{13} + \frac{1}{54} a^{12} - \frac{2}{81} a^{11} + \frac{2}{81} a^{10} - \frac{5}{108} a^{9} - \frac{8}{81} a^{8} - \frac{5}{324} a^{7} - \frac{13}{108} a^{6} + \frac{5}{324} a^{5} - \frac{1}{54} a^{4} - \frac{1}{54} a^{3} - \frac{7}{18} a^{2} - \frac{1}{12} a$, $\frac{1}{56577786803748} a^{17} - \frac{616692019}{56577786803748} a^{16} - \frac{2055293819}{4041270485982} a^{15} + \frac{76962337111}{18859262267916} a^{14} + \frac{249417773881}{56577786803748} a^{13} - \frac{227604599245}{28288893401874} a^{12} - \frac{169263018499}{4041270485982} a^{11} - \frac{668033127443}{56577786803748} a^{10} - \frac{1300937200853}{56577786803748} a^{9} - \frac{213689352187}{3143210377986} a^{8} - \frac{426765344159}{4041270485982} a^{7} + \frac{8656179331973}{56577786803748} a^{6} - \frac{13427012317447}{28288893401874} a^{5} + \frac{241850841803}{6286420755972} a^{4} - \frac{4172239267517}{9429631133958} a^{3} + \frac{1307064383495}{6286420755972} a^{2} - \frac{671396791049}{2095473585324} a + \frac{60572237821}{698491195108}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 555844.602335 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-519}) \), 3.1.519.1 x3, 6.0.139798359.1, 9.1.72555348321.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $173$ | 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |