Normalized defining polynomial
\( x^{18} + 9 x^{16} - 4 x^{15} + 18 x^{14} - 9 x^{13} - 16 x^{12} + 36 x^{11} + 162 x^{10} + 231 x^{9} + 711 x^{8} + 342 x^{7} + 767 x^{6} + 297 x^{5} + 165 x^{4} + 77 x^{3} + 18 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2727747884710191986159616=-\,2^{12}\cdot 3^{24}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23} a^{15} + \frac{7}{23} a^{14} + \frac{9}{23} a^{13} - \frac{9}{23} a^{12} - \frac{10}{23} a^{11} + \frac{8}{23} a^{10} + \frac{10}{23} a^{9} + \frac{9}{23} a^{7} + \frac{8}{23} a^{6} + \frac{4}{23} a^{5} - \frac{8}{23} a^{4} + \frac{1}{23} a^{3} + \frac{2}{23} a^{2} + \frac{1}{23}$, $\frac{1}{25479115007} a^{16} + \frac{481153253}{25479115007} a^{15} + \frac{5078800081}{25479115007} a^{14} + \frac{9711247145}{25479115007} a^{13} - \frac{8980887569}{25479115007} a^{12} - \frac{2866714920}{25479115007} a^{11} - \frac{2913037878}{25479115007} a^{10} - \frac{9884265376}{25479115007} a^{9} + \frac{12489711}{480738019} a^{8} + \frac{12175129476}{25479115007} a^{7} + \frac{3068454264}{25479115007} a^{6} + \frac{145776388}{1498771471} a^{5} - \frac{10931194170}{25479115007} a^{4} + \frac{5988032070}{25479115007} a^{3} - \frac{4663860910}{25479115007} a^{2} + \frac{522715}{1210927} a + \frac{3841220417}{25479115007}$, $\frac{1}{25479115007} a^{17} - \frac{22742410}{25479115007} a^{15} + \frac{470911981}{1107787609} a^{14} - \frac{4345005071}{25479115007} a^{13} - \frac{8858872242}{25479115007} a^{12} + \frac{325434803}{1341006053} a^{11} - \frac{5160852714}{25479115007} a^{10} - \frac{7302342923}{25479115007} a^{9} - \frac{10702130837}{25479115007} a^{8} + \frac{11737663519}{25479115007} a^{7} + \frac{10211709093}{25479115007} a^{6} - \frac{1319780648}{25479115007} a^{5} + \frac{10243933737}{25479115007} a^{4} - \frac{2024993262}{25479115007} a^{3} + \frac{29413}{483943} a^{2} + \frac{2516142401}{25479115007} a + \frac{281633788}{25479115007}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14940.9232602 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.44.1 x3, \(\Q(\zeta_{9})^+\), 6.0.21296.1, 6.0.8732691.1, 6.0.139723056.8 x2, 9.3.45270270144.6 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |