Normalized defining polynomial
\( x^{18} - 4 x^{17} + 6 x^{16} + 12 x^{15} - 62 x^{14} + 50 x^{13} + 234 x^{12} - 714 x^{11} + 654 x^{10} + 630 x^{9} - 2146 x^{8} + 1700 x^{7} + 1804 x^{6} - 6128 x^{5} + 8338 x^{4} - 7064 x^{3} + 4052 x^{2} - 1468 x + 274 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-27254952253472532070400000=-\,2^{26}\cdot 5^{5}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{1}{23} a^{14} + \frac{8}{23} a^{13} - \frac{6}{23} a^{11} + \frac{3}{23} a^{10} + \frac{7}{23} a^{9} - \frac{6}{23} a^{8} + \frac{5}{23} a^{7} + \frac{9}{23} a^{6} - \frac{1}{23} a^{5} - \frac{11}{23} a^{4} - \frac{1}{23} a^{3} - \frac{7}{23} a^{2} - \frac{1}{23} a + \frac{3}{23}$, $\frac{1}{3252654090518782540270667} a^{17} + \frac{49497804899963382914845}{3252654090518782540270667} a^{16} - \frac{1398616187992244497309381}{3252654090518782540270667} a^{15} + \frac{1339791428847805314895100}{3252654090518782540270667} a^{14} - \frac{1123007364849040154746322}{3252654090518782540270667} a^{13} - \frac{1280755327379949776782697}{3252654090518782540270667} a^{12} - \frac{471360908049889697746189}{3252654090518782540270667} a^{11} + \frac{1506774438866958435010178}{3252654090518782540270667} a^{10} + \frac{1576793777751714254750025}{3252654090518782540270667} a^{9} - \frac{590308212037783264457821}{3252654090518782540270667} a^{8} + \frac{45036246434451980191389}{250204160809137118482359} a^{7} + \frac{315459340464371737320008}{3252654090518782540270667} a^{6} + \frac{718972694732464924913337}{3252654090518782540270667} a^{5} - \frac{1397269762650931454481688}{3252654090518782540270667} a^{4} - \frac{253667993033375406780781}{3252654090518782540270667} a^{3} + \frac{812602700244364139036084}{3252654090518782540270667} a^{2} + \frac{1266093718619209168685761}{3252654090518782540270667} a + \frac{1096626105236461719322701}{3252654090518782540270667}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60198.0710392 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 58 conjugacy class representatives for t18n485 are not computed |
| Character table for t18n485 is not computed |
Intermediate fields
| 3.3.148.1, 6.0.64835840.1, 9.5.11994630400.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |