Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} - 22 x^{15} + 69 x^{14} - 125 x^{13} + 204 x^{12} - 417 x^{11} + 873 x^{10} - 1568 x^{9} + 1977 x^{8} - 1405 x^{7} + 2837 x^{6} - 7788 x^{5} + 7654 x^{4} - 1164 x^{3} - 48 x^{2} - 144 x + 36 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-272438055977283000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{54} a^{12} + \frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{18} a^{9} + \frac{1}{9} a^{8} - \frac{1}{54} a^{6} - \frac{1}{27} a^{5} + \frac{10}{27} a^{4} + \frac{1}{18} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{10} + \frac{1}{9} a^{8} - \frac{1}{54} a^{7} + \frac{17}{54} a^{4} + \frac{2}{9} a^{2} + \frac{1}{3}$, $\frac{1}{324} a^{14} + \frac{1}{162} a^{13} - \frac{5}{324} a^{11} + \frac{1}{162} a^{10} - \frac{43}{324} a^{8} - \frac{19}{162} a^{7} - \frac{1}{9} a^{6} - \frac{157}{324} a^{5} - \frac{55}{162} a^{4} + \frac{1}{3} a^{3} + \frac{7}{54} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{972} a^{15} + \frac{1}{486} a^{13} - \frac{5}{972} a^{12} + \frac{4}{81} a^{11} + \frac{1}{486} a^{10} - \frac{43}{972} a^{9} - \frac{2}{81} a^{8} - \frac{37}{486} a^{7} + \frac{23}{972} a^{6} - \frac{22}{81} a^{5} + \frac{107}{486} a^{4} - \frac{47}{162} a^{3} + \frac{38}{81} a^{2} - \frac{10}{27} a - \frac{5}{27}$, $\frac{1}{235224} a^{16} + \frac{95}{235224} a^{15} + \frac{37}{117612} a^{14} - \frac{1885}{235224} a^{13} + \frac{527}{235224} a^{12} - \frac{5153}{117612} a^{11} + \frac{4303}{78408} a^{10} - \frac{1139}{235224} a^{9} + \frac{3863}{117612} a^{8} - \frac{18869}{235224} a^{7} + \frac{2263}{235224} a^{6} + \frac{33071}{117612} a^{5} - \frac{28109}{117612} a^{4} - \frac{1669}{6534} a^{3} + \frac{422}{9801} a^{2} + \frac{58}{3267} a - \frac{2221}{6534}$, $\frac{1}{1245703728456} a^{17} + \frac{405827}{311425932114} a^{16} + \frac{31024321}{415234576152} a^{15} - \frac{152754853}{1245703728456} a^{14} + \frac{688199147}{622851864228} a^{13} + \frac{3193652749}{415234576152} a^{12} + \frac{14391917831}{415234576152} a^{11} - \frac{1885291235}{207617288076} a^{10} - \frac{8123234341}{415234576152} a^{9} + \frac{8595908287}{1245703728456} a^{8} - \frac{64432407581}{622851864228} a^{7} - \frac{42956607355}{415234576152} a^{6} - \frac{205887487193}{622851864228} a^{5} - \frac{67497975307}{622851864228} a^{4} - \frac{13262172139}{34602881346} a^{3} + \frac{1888394191}{4513419306} a^{2} + \frac{647455883}{3145716486} a - \frac{11813699273}{34602881346}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{80041913}{3431690712} a^{17} - \frac{214977701}{3431690712} a^{16} + \frac{55203773}{571948452} a^{15} - \frac{1651709819}{3431690712} a^{14} + \frac{4996308431}{3431690712} a^{13} - \frac{1400370739}{571948452} a^{12} + \frac{4524989513}{1143896904} a^{11} - \frac{9636851881}{1143896904} a^{10} + \frac{10078465345}{571948452} a^{9} - \frac{105829846579}{3431690712} a^{8} + \frac{123579584359}{3431690712} a^{7} - \frac{11843138939}{571948452} a^{6} + \frac{50363151085}{857922678} a^{5} - \frac{69710401220}{428961339} a^{4} + \frac{12028943263}{95324742} a^{3} + \frac{205439405}{12433662} a^{2} - \frac{1102633}{95324742} a - \frac{116868029}{47662371} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25716902.8477 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 3.1.14700.1 x3, 3.1.3675.1 x3, 3.1.588.1 x3, 6.0.270000.1, 6.0.648270000.1, 6.0.40516875.1, 6.0.1037232.1, 9.1.9529569000000.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |