Normalized defining polynomial
\( x^{18} - 12 x^{16} - 12 x^{15} + 60 x^{14} + 54 x^{13} - 37 x^{12} - 60 x^{11} - 132 x^{10} + 44 x^{9} + 120 x^{8} + 84 x^{7} + 163 x^{6} - 12 x^{5} + 60 x^{4} - 28 x^{3} + 12 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-270842635128557551398912=-\,2^{12}\cdot 3^{21}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{3}{10} a^{7} + \frac{2}{5} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{11} + \frac{3}{20} a^{10} + \frac{1}{20} a^{9} + \frac{7}{20} a^{8} + \frac{1}{4} a^{7} - \frac{1}{20} a^{6} + \frac{9}{20} a^{5} + \frac{9}{20} a^{4} + \frac{1}{20} a^{3} + \frac{1}{4} a^{2} + \frac{1}{5} a + \frac{1}{4}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{12} + \frac{3}{20} a^{11} - \frac{1}{20} a^{10} + \frac{1}{20} a^{9} - \frac{7}{20} a^{8} + \frac{1}{4} a^{7} - \frac{1}{20} a^{6} + \frac{1}{20} a^{5} + \frac{3}{20} a^{4} + \frac{7}{20} a^{3} - \frac{2}{5} a^{2} - \frac{1}{4} a - \frac{2}{5}$, $\frac{1}{20} a^{15} - \frac{1}{20} a^{12} + \frac{1}{10} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{3}{20} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{9}{20}$, $\frac{1}{100} a^{16} - \frac{1}{100} a^{15} + \frac{1}{50} a^{13} + \frac{3}{100} a^{12} + \frac{13}{100} a^{11} - \frac{7}{100} a^{10} + \frac{3}{20} a^{9} + \frac{31}{100} a^{8} - \frac{47}{100} a^{7} + \frac{3}{100} a^{6} + \frac{49}{100} a^{5} - \frac{19}{50} a^{4} + \frac{2}{5} a^{3} + \frac{17}{100} a^{2} - \frac{1}{20} a - \frac{13}{50}$, $\frac{1}{5353973000} a^{17} - \frac{5462233}{5353973000} a^{16} - \frac{95990823}{5353973000} a^{15} + \frac{28046347}{5353973000} a^{14} - \frac{43375941}{5353973000} a^{13} + \frac{129167307}{5353973000} a^{12} + \frac{309821841}{2676986500} a^{11} - \frac{23954627}{669246625} a^{10} - \frac{102029027}{2676986500} a^{9} - \frac{27131328}{669246625} a^{8} - \frac{680771619}{2676986500} a^{7} - \frac{575237803}{1338493250} a^{6} - \frac{1920818791}{5353973000} a^{5} + \frac{821301141}{5353973000} a^{4} - \frac{48330543}{5353973000} a^{3} + \frac{324691741}{5353973000} a^{2} - \frac{1979251241}{5353973000} a + \frac{196142697}{5353973000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{42603}{89000} a^{17} + \frac{26551}{89000} a^{16} - \frac{507919}{89000} a^{15} - \frac{832759}{89000} a^{14} + \frac{2200477}{89000} a^{13} + \frac{3889071}{89000} a^{12} + \frac{7212}{11125} a^{11} - \frac{1785199}{44500} a^{10} - \frac{1830653}{22250} a^{9} - \frac{772361}{44500} a^{8} + \frac{731242}{11125} a^{7} + \frac{3531757}{44500} a^{6} + \frac{9193877}{89000} a^{5} + \frac{3877123}{89000} a^{4} + \frac{2991971}{89000} a^{3} + \frac{69273}{89000} a^{2} + \frac{222027}{89000} a - \frac{93609}{89000} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 166897.8979387987 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.172.1, 3.1.108.1 x3, 6.0.798768.3, 6.0.34992.1, 9.1.100155921984.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |