Normalized defining polynomial
\( x^{18} - 6 x^{17} + 36 x^{16} - 144 x^{15} + 507 x^{14} - 1293 x^{13} + 3364 x^{12} - 5793 x^{11} + 12342 x^{10} - 15787 x^{9} + 39402 x^{8} - 21567 x^{7} + 117034 x^{6} + 69153 x^{5} + 328221 x^{4} + 99481 x^{3} + 485196 x^{2} - 77649 x + 187741 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2682154262850134111973718751547=-\,3^{27}\cdot 7^{12}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{204236824679891277333762384186489531082128357434} a^{17} + \frac{27524381608961569844016268118393349555257114735}{204236824679891277333762384186489531082128357434} a^{16} - \frac{9532703287904976121897056884500100969607865378}{102118412339945638666881192093244765541064178717} a^{15} + \frac{23039174313630542761518974453692711387121253407}{204236824679891277333762384186489531082128357434} a^{14} + \frac{3518053185034745013198302509059592446757758213}{204236824679891277333762384186489531082128357434} a^{13} - \frac{35554689870639701711356431339844623273300140663}{204236824679891277333762384186489531082128357434} a^{12} + \frac{23730027368840049988935505651318133469111337727}{204236824679891277333762384186489531082128357434} a^{11} + \frac{99077322933266548775093100767738267045868003369}{204236824679891277333762384186489531082128357434} a^{10} + \frac{24257442136742904164692839571754146134108456455}{204236824679891277333762384186489531082128357434} a^{9} - \frac{2203955334121244008110289249829764243165417294}{102118412339945638666881192093244765541064178717} a^{8} - \frac{47274488410509179789088222542127572516461020857}{102118412339945638666881192093244765541064178717} a^{7} - \frac{20863106488122992723524682671250664849373092251}{102118412339945638666881192093244765541064178717} a^{6} + \frac{48446047301584324489025527115960389332577355561}{102118412339945638666881192093244765541064178717} a^{5} - \frac{17866577376408483669772341695617413055085306530}{102118412339945638666881192093244765541064178717} a^{4} + \frac{65932178978241077956831003282438629411904271561}{204236824679891277333762384186489531082128357434} a^{3} + \frac{36446354561283731195856688161387210979571975555}{204236824679891277333762384186489531082128357434} a^{2} - \frac{12994420816620390643599812988591793360441157087}{204236824679891277333762384186489531082128357434} a + \frac{14009624351250016844062506109611321706954703542}{102118412339945638666881192093244765541064178717}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{120}$, which has order $960$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4^2$ (as 18T109):
| A solvable group of order 288 |
| The 32 conjugacy class representatives for $C_2\times A_4^2$ |
| Character table for $C_2\times A_4^2$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 71 | Data not computed | ||||||