Normalized defining polynomial
\( x^{18} - 9 x^{17} + 171 x^{16} - 1164 x^{15} + 12600 x^{14} - 68544 x^{13} + 539184 x^{12} - 2394342 x^{11} + 14927580 x^{10} - 54191978 x^{9} + 278675451 x^{8} - 813324834 x^{7} + 3515927145 x^{6} - 7905023649 x^{5} + 28924863876 x^{4} - 45528034884 x^{3} + 140699400039 x^{2} - 119129457897 x + 307625764301 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26792203422728825738155242257180552307=-\,3^{44}\cdot 67^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1809=3^{3}\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1809}(1408,·)$, $\chi_{1809}(1,·)$, $\chi_{1809}(1540,·)$, $\chi_{1809}(133,·)$, $\chi_{1809}(1609,·)$, $\chi_{1809}(202,·)$, $\chi_{1809}(1741,·)$, $\chi_{1809}(334,·)$, $\chi_{1809}(403,·)$, $\chi_{1809}(535,·)$, $\chi_{1809}(604,·)$, $\chi_{1809}(736,·)$, $\chi_{1809}(805,·)$, $\chi_{1809}(937,·)$, $\chi_{1809}(1006,·)$, $\chi_{1809}(1138,·)$, $\chi_{1809}(1207,·)$, $\chi_{1809}(1339,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5310312787767278821188742063687541618943088461624910392169117206529} a^{17} - \frac{1992211276498264380272130367766224449027545771961819456774594525522}{5310312787767278821188742063687541618943088461624910392169117206529} a^{16} - \frac{2229433221163981029188600178077653828887451602927867656708014770902}{5310312787767278821188742063687541618943088461624910392169117206529} a^{15} - \frac{481261605367007036660241787975633033627000536430348773378808470703}{5310312787767278821188742063687541618943088461624910392169117206529} a^{14} - \frac{1675302502482729160922408766479400022415814376777667776484115062755}{5310312787767278821188742063687541618943088461624910392169117206529} a^{13} - \frac{1054118990561995488289670390785937145519283894075586227174648356567}{5310312787767278821188742063687541618943088461624910392169117206529} a^{12} - \frac{1365192283595859221459696060758440296328892016279137141006592991901}{5310312787767278821188742063687541618943088461624910392169117206529} a^{11} - \frac{2013383360652450966700463976891724945069962125631606429414490237225}{5310312787767278821188742063687541618943088461624910392169117206529} a^{10} + \frac{1187116687809798688413738157628762256444833349648568871017032754600}{5310312787767278821188742063687541618943088461624910392169117206529} a^{9} + \frac{2117438063830244397193716959811231133223152988677467996994854213375}{5310312787767278821188742063687541618943088461624910392169117206529} a^{8} + \frac{1615644514659211327298736907146470276297706897085836657908221957208}{5310312787767278821188742063687541618943088461624910392169117206529} a^{7} + \frac{2041761154753969367411316836895644915984651804207554872227569873184}{5310312787767278821188742063687541618943088461624910392169117206529} a^{6} - \frac{911331743538259648275314752571818767147523696234353180769200426761}{5310312787767278821188742063687541618943088461624910392169117206529} a^{5} - \frac{2371117703439577706375867965818015328558141096638477385183049701438}{5310312787767278821188742063687541618943088461624910392169117206529} a^{4} - \frac{1016904100897843364556213041955616024337834303184012301243681652541}{5310312787767278821188742063687541618943088461624910392169117206529} a^{3} - \frac{1189851379841040511885285099737516013158518714368225302367884435418}{5310312787767278821188742063687541618943088461624910392169117206529} a^{2} - \frac{423559384111360223718254248254147773131007763681569234538845790493}{5310312787767278821188742063687541618943088461624910392169117206529} a + \frac{6831832804792510515449725003623175585897536237542892884277358480}{49629091474460549730735907137266744102271854781541218618402964547}$
Class group and class number
$C_{2206717}$, which has order $2206717$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-67}) \), \(\Q(\zeta_{9})^+\), 6.0.1973306043.4, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 67 | Data not computed | ||||||