Properties

Label 18.0.26792203422...2307.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{44}\cdot 67^{9}$
Root discriminant $120.04$
Ramified primes $3, 67$
Class number $2206717$ (GRH)
Class group $[2206717]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![307625764301, -119129457897, 140699400039, -45528034884, 28924863876, -7905023649, 3515927145, -813324834, 278675451, -54191978, 14927580, -2394342, 539184, -68544, 12600, -1164, 171, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 171*x^16 - 1164*x^15 + 12600*x^14 - 68544*x^13 + 539184*x^12 - 2394342*x^11 + 14927580*x^10 - 54191978*x^9 + 278675451*x^8 - 813324834*x^7 + 3515927145*x^6 - 7905023649*x^5 + 28924863876*x^4 - 45528034884*x^3 + 140699400039*x^2 - 119129457897*x + 307625764301)
 
gp: K = bnfinit(x^18 - 9*x^17 + 171*x^16 - 1164*x^15 + 12600*x^14 - 68544*x^13 + 539184*x^12 - 2394342*x^11 + 14927580*x^10 - 54191978*x^9 + 278675451*x^8 - 813324834*x^7 + 3515927145*x^6 - 7905023649*x^5 + 28924863876*x^4 - 45528034884*x^3 + 140699400039*x^2 - 119129457897*x + 307625764301, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 171 x^{16} - 1164 x^{15} + 12600 x^{14} - 68544 x^{13} + 539184 x^{12} - 2394342 x^{11} + 14927580 x^{10} - 54191978 x^{9} + 278675451 x^{8} - 813324834 x^{7} + 3515927145 x^{6} - 7905023649 x^{5} + 28924863876 x^{4} - 45528034884 x^{3} + 140699400039 x^{2} - 119129457897 x + 307625764301 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-26792203422728825738155242257180552307=-\,3^{44}\cdot 67^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $120.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1809=3^{3}\cdot 67\)
Dirichlet character group:    $\lbrace$$\chi_{1809}(1408,·)$, $\chi_{1809}(1,·)$, $\chi_{1809}(1540,·)$, $\chi_{1809}(133,·)$, $\chi_{1809}(1609,·)$, $\chi_{1809}(202,·)$, $\chi_{1809}(1741,·)$, $\chi_{1809}(334,·)$, $\chi_{1809}(403,·)$, $\chi_{1809}(535,·)$, $\chi_{1809}(604,·)$, $\chi_{1809}(736,·)$, $\chi_{1809}(805,·)$, $\chi_{1809}(937,·)$, $\chi_{1809}(1006,·)$, $\chi_{1809}(1138,·)$, $\chi_{1809}(1207,·)$, $\chi_{1809}(1339,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5310312787767278821188742063687541618943088461624910392169117206529} a^{17} - \frac{1992211276498264380272130367766224449027545771961819456774594525522}{5310312787767278821188742063687541618943088461624910392169117206529} a^{16} - \frac{2229433221163981029188600178077653828887451602927867656708014770902}{5310312787767278821188742063687541618943088461624910392169117206529} a^{15} - \frac{481261605367007036660241787975633033627000536430348773378808470703}{5310312787767278821188742063687541618943088461624910392169117206529} a^{14} - \frac{1675302502482729160922408766479400022415814376777667776484115062755}{5310312787767278821188742063687541618943088461624910392169117206529} a^{13} - \frac{1054118990561995488289670390785937145519283894075586227174648356567}{5310312787767278821188742063687541618943088461624910392169117206529} a^{12} - \frac{1365192283595859221459696060758440296328892016279137141006592991901}{5310312787767278821188742063687541618943088461624910392169117206529} a^{11} - \frac{2013383360652450966700463976891724945069962125631606429414490237225}{5310312787767278821188742063687541618943088461624910392169117206529} a^{10} + \frac{1187116687809798688413738157628762256444833349648568871017032754600}{5310312787767278821188742063687541618943088461624910392169117206529} a^{9} + \frac{2117438063830244397193716959811231133223152988677467996994854213375}{5310312787767278821188742063687541618943088461624910392169117206529} a^{8} + \frac{1615644514659211327298736907146470276297706897085836657908221957208}{5310312787767278821188742063687541618943088461624910392169117206529} a^{7} + \frac{2041761154753969367411316836895644915984651804207554872227569873184}{5310312787767278821188742063687541618943088461624910392169117206529} a^{6} - \frac{911331743538259648275314752571818767147523696234353180769200426761}{5310312787767278821188742063687541618943088461624910392169117206529} a^{5} - \frac{2371117703439577706375867965818015328558141096638477385183049701438}{5310312787767278821188742063687541618943088461624910392169117206529} a^{4} - \frac{1016904100897843364556213041955616024337834303184012301243681652541}{5310312787767278821188742063687541618943088461624910392169117206529} a^{3} - \frac{1189851379841040511885285099737516013158518714368225302367884435418}{5310312787767278821188742063687541618943088461624910392169117206529} a^{2} - \frac{423559384111360223718254248254147773131007763681569234538845790493}{5310312787767278821188742063687541618943088461624910392169117206529} a + \frac{6831832804792510515449725003623175585897536237542892884277358480}{49629091474460549730735907137266744102271854781541218618402964547}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2206717}$, which has order $2206717$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.03294431194 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-67}) \), \(\Q(\zeta_{9})^+\), 6.0.1973306043.4, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R $18$ $18$ $18$ $18$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ $18$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
67Data not computed