Normalized defining polynomial
\( x^{18} - 6 x^{17} + 13 x^{16} + 10 x^{15} - 136 x^{14} + 370 x^{13} - 397 x^{12} - 442 x^{11} + 2502 x^{10} - 4778 x^{9} + 5325 x^{8} - 3574 x^{7} + 2237 x^{6} - 5348 x^{5} + 11786 x^{4} - 13880 x^{3} + 9112 x^{2} - 2592 x + 526 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-267565734285752664500207616=-\,2^{33}\cdot 3^{8}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{45} a^{12} + \frac{1}{45} a^{11} - \frac{1}{15} a^{10} - \frac{1}{45} a^{9} - \frac{1}{15} a^{8} - \frac{8}{45} a^{7} - \frac{1}{5} a^{6} - \frac{2}{9} a^{5} + \frac{4}{15} a^{4} + \frac{1}{45} a^{3} + \frac{1}{15} a^{2} + \frac{8}{45} a - \frac{1}{45}$, $\frac{1}{135} a^{13} - \frac{1}{135} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{135} a^{9} - \frac{2}{135} a^{8} - \frac{38}{135} a^{7} + \frac{53}{135} a^{6} - \frac{58}{135} a^{5} + \frac{67}{135} a^{4} + \frac{46}{135} a^{3} + \frac{47}{135} a^{2} + \frac{28}{135} a + \frac{47}{135}$, $\frac{1}{135} a^{14} + \frac{2}{45} a^{11} - \frac{14}{135} a^{10} - \frac{1}{15} a^{9} - \frac{13}{135} a^{8} - \frac{11}{45} a^{7} - \frac{59}{135} a^{6} - \frac{17}{45} a^{5} - \frac{8}{27} a^{4} - \frac{4}{15} a^{3} - \frac{14}{45} a^{2} - \frac{4}{45} a - \frac{49}{135}$, $\frac{1}{317925} a^{15} + \frac{52}{21195} a^{14} - \frac{1148}{317925} a^{13} + \frac{688}{63585} a^{12} - \frac{9088}{317925} a^{11} - \frac{38512}{317925} a^{10} - \frac{21851}{317925} a^{9} + \frac{3839}{63585} a^{8} + \frac{6782}{317925} a^{7} + \frac{84191}{317925} a^{6} + \frac{117124}{317925} a^{5} + \frac{796}{12717} a^{4} - \frac{69914}{317925} a^{3} - \frac{19673}{63585} a^{2} - \frac{3074}{7065} a - \frac{128302}{317925}$, $\frac{1}{317925} a^{16} + \frac{397}{317925} a^{14} - \frac{146}{63585} a^{13} + \frac{1832}{317925} a^{12} + \frac{11033}{317925} a^{11} - \frac{25226}{317925} a^{10} + \frac{2084}{63585} a^{9} - \frac{20488}{317925} a^{8} - \frac{29479}{317925} a^{7} - \frac{12206}{317925} a^{6} + \frac{20153}{63585} a^{5} - \frac{25364}{317925} a^{4} - \frac{30398}{63585} a^{3} + \frac{746}{21195} a^{2} - \frac{2767}{317925} a + \frac{92}{4239}$, $\frac{1}{303444470025} a^{17} + \frac{26171}{60688894005} a^{16} - \frac{5021}{60688894005} a^{15} - \frac{8209144}{6743210445} a^{14} - \frac{832464112}{303444470025} a^{13} + \frac{648613306}{101148156675} a^{12} - \frac{1475442329}{60688894005} a^{11} - \frac{25819618256}{303444470025} a^{10} + \frac{171720059}{4273865775} a^{9} - \frac{33522780874}{303444470025} a^{8} - \frac{24510797633}{60688894005} a^{7} - \frac{64427773052}{303444470025} a^{6} + \frac{7176909386}{101148156675} a^{5} + \frac{29498966153}{60688894005} a^{4} - \frac{1808490197}{3746228025} a^{3} - \frac{66243597872}{303444470025} a^{2} - \frac{2935793068}{12137778801} a - \frac{72442110016}{303444470025}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1040005.4350050329 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 3.1.1176.1, 3.1.588.1, 6.0.309786624.1, 6.0.77446656.1, 9.1.78066229248.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7 | Data not computed | ||||||