Normalized defining polynomial
\( x^{18} + 1465272 x^{12} + 63795390480 x^{6} + 699092182315008 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26735514947708767000623460382175089698901347865969225007869952=-\,2^{12}\cdot 3^{27}\cdot 7^{12}\cdot 13^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2585.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{72} a^{6} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{3096} a^{7} + \frac{1}{12} a^{5} - \frac{1}{2} a^{2} + \frac{79}{258} a$, $\frac{1}{6192} a^{8} - \frac{179}{516} a^{2}$, $\frac{1}{24768} a^{9} + \frac{337}{2064} a^{3}$, $\frac{1}{24768} a^{10} - \frac{179}{2064} a^{4} - \frac{1}{2} a$, $\frac{1}{74304} a^{11} - \frac{695}{6192} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{80880498432} a^{12} + \frac{1}{74304} a^{10} - \frac{1}{49536} a^{9} - \frac{38910535}{6740041536} a^{6} - \frac{179}{6192} a^{4} - \frac{337}{4128} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{567751}{1632762}$, $\frac{1}{80880498432} a^{13} - \frac{1}{49536} a^{10} + \frac{275753}{6740041536} a^{7} + \frac{1}{12} a^{5} - \frac{337}{4128} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{11507471}{70208766} a$, $\frac{1}{3477861432576} a^{14} - \frac{1}{148608} a^{11} + \frac{14426357}{289821786048} a^{8} + \frac{695}{12384} a^{5} + \frac{1}{12} a^{4} - \frac{1}{6} a^{3} + \frac{2268334819}{6037953876} a^{2} - \frac{1}{2} a$, $\frac{1}{299096083201536} a^{15} + \frac{223690207}{12462336800064} a^{9} - \frac{1}{12} a^{5} + \frac{420648827029}{2077056133344} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{77166789465996288} a^{16} - \frac{9839566253}{3215282894416512} a^{10} - \frac{1}{18576} a^{8} - \frac{1}{6192} a^{7} + \frac{1}{12} a^{5} - \frac{13112418460379}{535880482402752} a^{4} - \frac{79}{1548} a^{2} + \frac{179}{516} a + \frac{1}{3}$, $\frac{1}{6636343894075680768} a^{17} - \frac{572375602367}{276514328919820032} a^{11} + \frac{1}{74304} a^{9} - \frac{1}{12384} a^{8} + \frac{1036752912939457}{46085721486636672} a^{5} + \frac{1369}{6192} a^{3} - \frac{337}{1032} a^{2} - \frac{1}{3} a$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{57}\times C_{15561}$, which has order $17458368291$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{11077632711168} a^{15} + \frac{186857}{1384704088896} a^{9} + \frac{2026772295}{230784014816} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 973307437394863.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), Deg 3 x3, Deg 3, 6.0.410174498845670832.1, 6.0.18688575603655877283.1, Deg 6 x2, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $61$ | 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |