Normalized defining polynomial
\( x^{18} - 3 x^{17} - 24 x^{16} + 80 x^{15} + 264 x^{14} - 996 x^{13} - 208 x^{12} + 3414 x^{11} - 1398 x^{10} - 4424 x^{9} + 45528 x^{8} - 108612 x^{7} + 306560 x^{6} - 431268 x^{5} + 994161 x^{4} - 776387 x^{3} + 1606332 x^{2} - 619836 x + 1068904 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-265529453168247662686860141155127=-\,3^{24}\cdot 7^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(819=3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{819}(1,·)$, $\chi_{819}(391,·)$, $\chi_{819}(328,·)$, $\chi_{819}(139,·)$, $\chi_{819}(274,·)$, $\chi_{819}(211,·)$, $\chi_{819}(22,·)$, $\chi_{819}(664,·)$, $\chi_{819}(601,·)$, $\chi_{819}(412,·)$, $\chi_{819}(547,·)$, $\chi_{819}(484,·)$, $\chi_{819}(295,·)$, $\chi_{819}(685,·)$, $\chi_{819}(757,·)$, $\chi_{819}(118,·)$, $\chi_{819}(55,·)$, $\chi_{819}(568,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{22243748} a^{15} + \frac{1004067}{11121874} a^{14} - \frac{715819}{11121874} a^{13} + \frac{1226263}{22243748} a^{12} - \frac{1596301}{22243748} a^{11} + \frac{582454}{5560937} a^{10} + \frac{470119}{22243748} a^{9} - \frac{4700767}{22243748} a^{8} - \frac{4988187}{11121874} a^{7} - \frac{120011}{11121874} a^{6} - \frac{4150567}{22243748} a^{5} - \frac{39243}{22243748} a^{4} - \frac{1408896}{5560937} a^{3} - \frac{6585997}{22243748} a^{2} - \frac{1600653}{5560937} a - \frac{1055139}{5560937}$, $\frac{1}{1017406789772} a^{16} + \frac{13689}{1017406789772} a^{15} + \frac{17051343497}{254351697443} a^{14} - \frac{99779688375}{1017406789772} a^{13} + \frac{22356036815}{1017406789772} a^{12} - \frac{19155950632}{254351697443} a^{11} - \frac{116216271849}{1017406789772} a^{10} - \frac{36430499363}{508703394886} a^{9} - \frac{73699521837}{1017406789772} a^{8} - \frac{97114391847}{254351697443} a^{7} + \frac{74871282283}{1017406789772} a^{6} + \frac{117797340099}{1017406789772} a^{5} + \frac{47961126944}{254351697443} a^{4} + \frac{508693178503}{1017406789772} a^{3} - \frac{253176268391}{1017406789772} a^{2} - \frac{93800158956}{254351697443} a + \frac{1765381148}{4799088631}$, $\frac{1}{3605740643098168570381530266924} a^{17} - \frac{363152581552164835}{3605740643098168570381530266924} a^{16} + \frac{26312321225855997661809}{1802870321549084285190765133462} a^{15} - \frac{61727641092556297899187284021}{901435160774542142595382566731} a^{14} - \frac{95950869363296683555392496108}{901435160774542142595382566731} a^{13} - \frac{74561565477732864520875660638}{901435160774542142595382566731} a^{12} + \frac{9684425359481368075166133011}{3605740643098168570381530266924} a^{11} + \frac{181578257504583774219540216695}{3605740643098168570381530266924} a^{10} + \frac{186284120438229304205345050531}{1802870321549084285190765133462} a^{9} + \frac{37112215215764390495547960074}{901435160774542142595382566731} a^{8} + \frac{334148565210247635390938379013}{1802870321549084285190765133462} a^{7} + \frac{371617854459289100671520949431}{901435160774542142595382566731} a^{6} + \frac{314887359435647824340300657642}{901435160774542142595382566731} a^{5} - \frac{547302521479651103486448574385}{3605740643098168570381530266924} a^{4} - \frac{385602419556619403065948066703}{901435160774542142595382566731} a^{3} + \frac{937318856350107032170393222517}{3605740643098168570381530266924} a^{2} + \frac{804771211584090872633527510367}{1802870321549084285190765133462} a - \frac{4367385334633465950057924122}{17008210580651738539535520127}$
Class group and class number
$C_{4}\times C_{532}$, which has order $2128$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.136445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.13689.2, 3.3.13689.1, 3.3.169.1, \(\Q(\zeta_{9})^+\), 6.0.64274331303.6, 6.0.64274331303.4, 6.0.9796423.1, 6.0.2250423.1, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||