Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} - 51 x^{15} + 99 x^{14} + 531 x^{13} - 87 x^{12} - 4662 x^{11} - 25020 x^{10} + 130548 x^{9} - 70938 x^{8} - 512811 x^{7} + 1297998 x^{6} - 1303911 x^{5} - 212220 x^{4} + 2188377 x^{3} - 3303990 x^{2} + 1283616 x + 4213137 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-264753491934954018004342992243=-\,3^{33}\cdot 37^{4}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} - \frac{3}{19} a^{14} + \frac{6}{19} a^{13} + \frac{1}{19} a^{12} - \frac{9}{19} a^{11} + \frac{5}{19} a^{10} + \frac{1}{19} a^{9} + \frac{4}{19} a^{8} + \frac{5}{19} a^{7} - \frac{7}{19} a^{6} + \frac{3}{19} a^{5} - \frac{7}{19} a^{4} + \frac{4}{19} a^{3} + \frac{8}{19} a^{2} - \frac{8}{19} a - \frac{4}{19}$, $\frac{1}{11951} a^{16} - \frac{79}{11951} a^{15} - \frac{3357}{11951} a^{14} - \frac{5680}{11951} a^{13} + \frac{998}{11951} a^{12} - \frac{1895}{11951} a^{11} + \frac{3269}{11951} a^{10} - \frac{4784}{11951} a^{9} + \frac{3387}{11951} a^{8} + \frac{13}{703} a^{7} + \frac{383}{11951} a^{6} - \frac{25}{703} a^{5} - \frac{15}{11951} a^{4} - \frac{2690}{11951} a^{3} - \frac{3352}{11951} a^{2} + \frac{5943}{11951} a - \frac{162}{629}$, $\frac{1}{509300638899266853915999667074317784326041144919969} a^{17} + \frac{19127334133113134087456919267113917883832268733}{509300638899266853915999667074317784326041144919969} a^{16} - \frac{5810161656613364021379142547637368406802771367147}{509300638899266853915999667074317784326041144919969} a^{15} - \frac{2329894828195390841872034746392286144010966036813}{13764882132412617673405396407413994170974084997837} a^{14} + \frac{70407632135264114869853839332096744637466020760506}{509300638899266853915999667074317784326041144919969} a^{13} + \frac{7397567475527689876344317369221842728160057506556}{509300638899266853915999667074317784326041144919969} a^{12} - \frac{228487560218540371978936041936128158477910742440081}{509300638899266853915999667074317784326041144919969} a^{11} - \frac{195074516258936067068001507079635667169201278099753}{509300638899266853915999667074317784326041144919969} a^{10} - \frac{20730343689121387216684163660128476221255245802125}{509300638899266853915999667074317784326041144919969} a^{9} - \frac{5142644328277885501511134172322417270746460005378}{13764882132412617673405396407413994170974084997837} a^{8} + \frac{3585557245052225504572910175091436036117011852386}{13764882132412617673405396407413994170974084997837} a^{7} + \frac{88179445989434056041026201298883540756814536920308}{509300638899266853915999667074317784326041144919969} a^{6} + \frac{37785833091694561103830090794971457007722071341504}{509300638899266853915999667074317784326041144919969} a^{5} + \frac{120352084488393218425200845653060493911957894246099}{509300638899266853915999667074317784326041144919969} a^{4} + \frac{98550361965848002977255480136598425976307680438091}{509300638899266853915999667074317784326041144919969} a^{3} - \frac{48153791520188838396548388021428677604810775867721}{509300638899266853915999667074317784326041144919969} a^{2} - \frac{180829047719834633631526307911109805989127375570958}{509300638899266853915999667074317784326041144919969} a + \frac{203546487740320840164811526912267387615471493301595}{509300638899266853915999667074317784326041144919969}$
Class group and class number
$C_{42}$, which has order $42$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1445875642572562332313926208183127253753073412}{509300638899266853915999667074317784326041144919969} a^{17} - \frac{4635431422123556184503740711568738028639883750}{509300638899266853915999667074317784326041144919969} a^{16} + \frac{7092745178024153083405730731284320254970940511}{509300638899266853915999667074317784326041144919969} a^{15} - \frac{66054825934729253201758217207552805983716623030}{509300638899266853915999667074317784326041144919969} a^{14} - \frac{19064129176665112313121173637824370904243235848}{509300638899266853915999667074317784326041144919969} a^{13} + \frac{30331169502187165638311003333948178283280858700}{26805296784171939679789456161806199175054797101051} a^{12} + \frac{1606778283964503106474802065127616209795428210061}{509300638899266853915999667074317784326041144919969} a^{11} - \frac{1075955934545413934809443123145364647323719148974}{509300638899266853915999667074317784326041144919969} a^{10} - \frac{37341490144126189123023282216409082645822915213085}{509300638899266853915999667074317784326041144919969} a^{9} + \frac{77904925057635683330746863485018974755853209650719}{509300638899266853915999667074317784326041144919969} a^{8} + \frac{45712932905815854579270173768213019467354254371283}{509300638899266853915999667074317784326041144919969} a^{7} - \frac{381412595150743404004800017074985226061617409152014}{509300638899266853915999667074317784326041144919969} a^{6} + \frac{755546387946926908891555328263656363401929215878091}{509300638899266853915999667074317784326041144919969} a^{5} - \frac{37756723607303196149252020643817550901465156553084}{29958861111721579642117627474959869666237714407057} a^{4} - \frac{13711970204233617030195318194505675919624397897599}{509300638899266853915999667074317784326041144919969} a^{3} + \frac{845453952649337101940082455125523226802012941870798}{509300638899266853915999667074317784326041144919969} a^{2} - \frac{1257007723053708362612642645966110952654244365447448}{509300638899266853915999667074317784326041144919969} a - \frac{907822144081140555280144824140440363154900380084289}{509300638899266853915999667074317784326041144919969} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5933010.89765 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 26 conjugacy class representatives for t18n201 |
| Character table for t18n201 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.9.297070974648009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | $18$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |