Normalized defining polynomial
\( x^{18} - 4 x^{17} + 2 x^{16} + 6 x^{15} + 10 x^{14} - 22 x^{13} - 51 x^{12} + 94 x^{11} + 42 x^{10} - 148 x^{9} + 42 x^{8} + 94 x^{7} - 51 x^{6} - 22 x^{5} + 10 x^{4} + 6 x^{3} + 2 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2645111175781810176000000=-\,2^{24}\cdot 3^{6}\cdot 5^{6}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{110} a^{14} - \frac{4}{55} a^{12} - \frac{21}{110} a^{10} + \frac{19}{55} a^{9} + \frac{1}{10} a^{8} + \frac{24}{55} a^{7} - \frac{1}{10} a^{6} - \frac{5}{11} a^{5} - \frac{21}{110} a^{4} - \frac{1}{5} a^{3} - \frac{3}{11} a^{2} - \frac{1}{5} a - \frac{43}{110}$, $\frac{1}{110} a^{15} - \frac{4}{55} a^{13} - \frac{21}{110} a^{11} + \frac{19}{55} a^{10} + \frac{1}{10} a^{9} + \frac{24}{55} a^{8} - \frac{1}{10} a^{7} - \frac{5}{11} a^{6} - \frac{21}{110} a^{5} - \frac{1}{5} a^{4} - \frac{3}{11} a^{3} - \frac{1}{5} a^{2} - \frac{43}{110} a$, $\frac{1}{220} a^{16} - \frac{1}{220} a^{14} - \frac{1}{10} a^{13} - \frac{1}{20} a^{12} + \frac{4}{55} a^{11} - \frac{7}{22} a^{10} - \frac{41}{110} a^{9} + \frac{2}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{22} a^{6} - \frac{16}{55} a^{5} - \frac{1}{220} a^{4} - \frac{1}{10} a^{3} - \frac{1}{20} a^{2} + \frac{51}{220}$, $\frac{1}{440} a^{17} - \frac{1}{440} a^{16} + \frac{1}{440} a^{15} + \frac{1}{440} a^{14} + \frac{39}{440} a^{13} + \frac{27}{440} a^{12} - \frac{1}{11} a^{11} - \frac{89}{220} a^{10} + \frac{37}{110} a^{9} - \frac{31}{110} a^{8} - \frac{27}{220} a^{7} - \frac{2}{5} a^{6} + \frac{109}{440} a^{5} - \frac{87}{440} a^{4} + \frac{127}{440} a^{3} + \frac{1}{8} a^{2} + \frac{97}{440} a - \frac{73}{440}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{35}{22} a^{17} + \frac{111}{20} a^{16} - \frac{13}{55} a^{15} - \frac{2237}{220} a^{14} - \frac{1132}{55} a^{13} + \frac{1093}{44} a^{12} + \frac{10421}{110} a^{11} - \frac{1043}{10} a^{10} - \frac{6814}{55} a^{9} + \frac{10169}{55} a^{8} + \frac{282}{11} a^{7} - \frac{16711}{110} a^{6} + \frac{818}{55} a^{5} + \frac{10523}{220} a^{4} + \frac{89}{55} a^{3} - \frac{2267}{220} a^{2} - \frac{383}{55} a + \frac{843}{220} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 169260.62829015162 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.980.1, 3.1.588.1, 6.0.3841600.1, 6.0.5531904.1, 9.1.406594944000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7 | Data not computed | ||||||