Properties

Label 18.0.26357601369...9367.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,23^{9}\cdot 12097^{2}$
Root discriminant $13.63$
Ramified primes $23, 12097$
Class number $1$
Class group Trivial
Galois group 18T319

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 28, -34, -5, 46, -15, -66, 88, -25, -28, 19, 9, -15, 7, 1, -2, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 - 2*x^16 + x^15 + 7*x^14 - 15*x^13 + 9*x^12 + 19*x^11 - 28*x^10 - 25*x^9 + 88*x^8 - 66*x^7 - 15*x^6 + 46*x^5 - 5*x^4 - 34*x^3 + 28*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^18 - x^17 - 2*x^16 + x^15 + 7*x^14 - 15*x^13 + 9*x^12 + 19*x^11 - 28*x^10 - 25*x^9 + 88*x^8 - 66*x^7 - 15*x^6 + 46*x^5 - 5*x^4 - 34*x^3 + 28*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} - 2 x^{16} + x^{15} + 7 x^{14} - 15 x^{13} + 9 x^{12} + 19 x^{11} - 28 x^{10} - 25 x^{9} + 88 x^{8} - 66 x^{7} - 15 x^{6} + 46 x^{5} - 5 x^{4} - 34 x^{3} + 28 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-263576013691949569367=-\,23^{9}\cdot 12097^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 12097$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{15} - \frac{2}{7} a^{14} - \frac{3}{7} a^{13} + \frac{3}{7} a^{12} - \frac{2}{7} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{8} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{37161252527} a^{17} - \frac{721098124}{37161252527} a^{16} + \frac{14693424660}{37161252527} a^{15} - \frac{12336969718}{37161252527} a^{14} - \frac{13191217302}{37161252527} a^{13} + \frac{7051391163}{37161252527} a^{12} + \frac{15803084933}{37161252527} a^{11} - \frac{2133551371}{5308750361} a^{10} - \frac{4575804409}{37161252527} a^{9} - \frac{2135341311}{5308750361} a^{8} - \frac{443967990}{37161252527} a^{7} - \frac{3549042512}{37161252527} a^{6} - \frac{5155630705}{37161252527} a^{5} + \frac{381038598}{5308750361} a^{4} - \frac{9295439229}{37161252527} a^{3} + \frac{17187369133}{37161252527} a^{2} + \frac{12442943414}{37161252527} a + \frac{1159064490}{5308750361}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 389.007599131 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T319:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1296
The 22 conjugacy class representatives for t18n319
Character table for t18n319 is not computed

Intermediate fields

\(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 6.0.12167.1, 9.3.147184199.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
12097Data not computed