Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 19 x^{15} + 117 x^{14} - 405 x^{13} + 1224 x^{12} - 2964 x^{11} + 8802 x^{10} - 23243 x^{9} + 65484 x^{8} - 120219 x^{7} + 236523 x^{6} - 297333 x^{5} + 474168 x^{4} - 443393 x^{3} + 726267 x^{2} - 729036 x + 1100051 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2618850774742652270958169921875=-\,3^{24}\cdot 5^{9}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(256,·)$, $\chi_{315}(1,·)$, $\chi_{315}(199,·)$, $\chi_{315}(139,·)$, $\chi_{315}(226,·)$, $\chi_{315}(16,·)$, $\chi_{315}(211,·)$, $\chi_{315}(151,·)$, $\chi_{315}(94,·)$, $\chi_{315}(34,·)$, $\chi_{315}(229,·)$, $\chi_{315}(106,·)$, $\chi_{315}(46,·)$, $\chi_{315}(304,·)$, $\chi_{315}(19,·)$, $\chi_{315}(244,·)$, $\chi_{315}(121,·)$, $\chi_{315}(124,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{2}{13} a^{11} - \frac{3}{13} a^{10} + \frac{1}{13} a^{9} + \frac{6}{13} a^{7} + \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{1}{13} a^{3} + \frac{2}{13} a^{2} - \frac{3}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{13} + \frac{6}{13} a^{11} - \frac{6}{13} a^{10} - \frac{2}{13} a^{9} + \frac{6}{13} a^{8} + \frac{1}{13} a^{7} + \frac{1}{13} a^{6} + \frac{4}{13} a^{5} + \frac{2}{13} a^{4} + \frac{6}{13} a^{2} + \frac{2}{13} a - \frac{5}{13}$, $\frac{1}{13} a^{14} - \frac{5}{13} a^{11} + \frac{3}{13} a^{10} + \frac{1}{13} a^{8} + \frac{4}{13} a^{7} + \frac{4}{13} a^{6} - \frac{4}{13} a^{5} + \frac{3}{13} a^{4} + \frac{3}{13} a^{2} - \frac{2}{13}$, $\frac{1}{13} a^{15} - \frac{2}{13} a^{10} + \frac{6}{13} a^{9} + \frac{4}{13} a^{8} - \frac{5}{13} a^{7} - \frac{4}{13} a^{6} - \frac{5}{13} a^{5} + \frac{4}{13} a^{4} - \frac{5}{13} a^{3} - \frac{3}{13} a^{2} - \frac{4}{13} a + \frac{6}{13}$, $\frac{1}{923} a^{16} - \frac{25}{923} a^{15} + \frac{12}{923} a^{14} - \frac{27}{923} a^{13} - \frac{31}{923} a^{12} + \frac{5}{71} a^{11} - \frac{147}{923} a^{10} + \frac{215}{923} a^{9} - \frac{151}{923} a^{8} - \frac{70}{923} a^{7} - \frac{118}{923} a^{6} - \frac{97}{923} a^{5} - \frac{322}{923} a^{4} + \frac{18}{71} a^{3} + \frac{31}{71} a^{2} - \frac{258}{923} a - \frac{266}{923}$, $\frac{1}{157608935331780542931915764280155802136238053} a^{17} - \frac{83262021347818171794668454429771749729755}{157608935331780542931915764280155802136238053} a^{16} - \frac{1082633641371146176728372341360313295162377}{157608935331780542931915764280155802136238053} a^{15} - \frac{5438990815001052893779743803402089560554526}{157608935331780542931915764280155802136238053} a^{14} - \frac{2252730614028941877956620756284360169492000}{157608935331780542931915764280155802136238053} a^{13} - \frac{3054762016299619640770155731171895511469949}{157608935331780542931915764280155802136238053} a^{12} - \frac{328199853158869353192969074980484692193115}{2219844159602542858195996680002194396285043} a^{11} - \frac{35558002729441316685196965018231992169893470}{157608935331780542931915764280155802136238053} a^{10} - \frac{45563605802145279229689468094217621188225730}{157608935331780542931915764280155802136238053} a^{9} - \frac{40309822653676804310798940583671801676347656}{157608935331780542931915764280155802136238053} a^{8} + \frac{1059788061677618915295754976446079584718533}{157608935331780542931915764280155802136238053} a^{7} + \frac{20350570651919965230730043016881377007584071}{157608935331780542931915764280155802136238053} a^{6} - \frac{59812851948087964927505194486812832878412340}{157608935331780542931915764280155802136238053} a^{5} - \frac{27936125888808294255746552158545541567176788}{157608935331780542931915764280155802136238053} a^{4} + \frac{56912492873984832588198510279364910271962183}{157608935331780542931915764280155802136238053} a^{3} - \frac{35952387382728723977258856401765590007439811}{157608935331780542931915764280155802136238053} a^{2} + \frac{16470145516325234920067819294722941864916519}{157608935331780542931915764280155802136238053} a + \frac{27293405524257389174258709187725830504318313}{157608935331780542931915764280155802136238053}$
Class group and class number
$C_{2}\times C_{18}\times C_{18}$, which has order $648$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.281302875.3, 6.0.13783840875.2, 6.0.2100875.1, 6.0.13783840875.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||