Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 50 x^{15} + 90 x^{14} - 123 x^{13} + 132 x^{12} - 99 x^{11} + 48 x^{10} - 12 x^{9} + 42 x^{8} - 105 x^{7} + 176 x^{6} - 177 x^{5} + 129 x^{4} - 64 x^{3} + 18 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2608732272818582433792=-\,2^{12}\cdot 3^{27}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{77298081517} a^{17} + \frac{18718838564}{77298081517} a^{16} - \frac{200285335}{77298081517} a^{15} - \frac{9498690095}{77298081517} a^{14} + \frac{5669390566}{77298081517} a^{13} - \frac{10325162420}{77298081517} a^{12} + \frac{32763174432}{77298081517} a^{11} + \frac{28831649266}{77298081517} a^{10} - \frac{13462355147}{77298081517} a^{9} + \frac{29370998679}{77298081517} a^{8} + \frac{15060365993}{77298081517} a^{7} - \frac{18567202071}{77298081517} a^{6} - \frac{29791542125}{77298081517} a^{5} - \frac{36711731740}{77298081517} a^{4} - \frac{21257745910}{77298081517} a^{3} - \frac{9756595641}{77298081517} a^{2} - \frac{13575287301}{77298081517} a + \frac{24340947288}{77298081517}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1796255210}{77298081517} a^{17} + \frac{20360318710}{77298081517} a^{16} - \frac{91843173696}{77298081517} a^{15} + \frac{257404363983}{77298081517} a^{14} - \frac{494041115421}{77298081517} a^{13} + \frac{679492836305}{77298081517} a^{12} - \frac{632922093119}{77298081517} a^{11} + \frac{329767770094}{77298081517} a^{10} + \frac{112050953262}{77298081517} a^{9} - \frac{315477938666}{77298081517} a^{8} + \frac{5134428237}{77298081517} a^{7} + \frac{790019342408}{77298081517} a^{6} - \frac{1183305953731}{77298081517} a^{5} + \frac{934156324518}{77298081517} a^{4} - \frac{216419147620}{77298081517} a^{3} - \frac{201908800648}{77298081517} a^{2} + \frac{258061363679}{77298081517} a - \frac{17053154818}{77298081517} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12453.4337865 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 26 conjugacy class representatives for t18n201 |
| Character table for t18n201 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.5.9829532736.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |