Properties

Label 18.0.26036970568...3151.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{44}\cdot 31^{9}$
Root discriminant $81.65$
Ramified primes $3, 31$
Class number $93339$ (GRH)
Class group $[93339]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![844617131, -523610901, 682386453, -347840628, 254607615, -108970803, 57705369, -20953674, 8749269, -2697362, 919602, -238122, 66792, -14112, 3204, -516, 90, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 90*x^16 - 516*x^15 + 3204*x^14 - 14112*x^13 + 66792*x^12 - 238122*x^11 + 919602*x^10 - 2697362*x^9 + 8749269*x^8 - 20953674*x^7 + 57705369*x^6 - 108970803*x^5 + 254607615*x^4 - 347840628*x^3 + 682386453*x^2 - 523610901*x + 844617131)
 
gp: K = bnfinit(x^18 - 9*x^17 + 90*x^16 - 516*x^15 + 3204*x^14 - 14112*x^13 + 66792*x^12 - 238122*x^11 + 919602*x^10 - 2697362*x^9 + 8749269*x^8 - 20953674*x^7 + 57705369*x^6 - 108970803*x^5 + 254607615*x^4 - 347840628*x^3 + 682386453*x^2 - 523610901*x + 844617131, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 90 x^{16} - 516 x^{15} + 3204 x^{14} - 14112 x^{13} + 66792 x^{12} - 238122 x^{11} + 919602 x^{10} - 2697362 x^{9} + 8749269 x^{8} - 20953674 x^{7} + 57705369 x^{6} - 108970803 x^{5} + 254607615 x^{4} - 347840628 x^{3} + 682386453 x^{2} - 523610901 x + 844617131 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-26036970568557781217070611380223151=-\,3^{44}\cdot 31^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $81.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(837=3^{3}\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{837}(1,·)$, $\chi_{837}(712,·)$, $\chi_{837}(652,·)$, $\chi_{837}(526,·)$, $\chi_{837}(466,·)$, $\chi_{837}(340,·)$, $\chi_{837}(280,·)$, $\chi_{837}(154,·)$, $\chi_{837}(94,·)$, $\chi_{837}(805,·)$, $\chi_{837}(745,·)$, $\chi_{837}(619,·)$, $\chi_{837}(559,·)$, $\chi_{837}(433,·)$, $\chi_{837}(373,·)$, $\chi_{837}(247,·)$, $\chi_{837}(187,·)$, $\chi_{837}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{49006804076455695203825880950855693951956618347963166849} a^{17} - \frac{12854088837248721726619199629288122706685839219701808131}{49006804076455695203825880950855693951956618347963166849} a^{16} + \frac{15844059022775427114922734975298635917000718168921660335}{49006804076455695203825880950855693951956618347963166849} a^{15} - \frac{22817334270813962571236561375504622486699370664480581302}{49006804076455695203825880950855693951956618347963166849} a^{14} - \frac{14319472845372431359054551014847453395134875635259528498}{49006804076455695203825880950855693951956618347963166849} a^{13} - \frac{16159183003525939078874167585384257324896952876751527951}{49006804076455695203825880950855693951956618347963166849} a^{12} - \frac{9979626143420035221890463335296550438360559681802743976}{49006804076455695203825880950855693951956618347963166849} a^{11} - \frac{4132716440995097476854743264381159126446395132304651222}{49006804076455695203825880950855693951956618347963166849} a^{10} - \frac{22771686191817786970608820146995232900059801674279058044}{49006804076455695203825880950855693951956618347963166849} a^{9} - \frac{12604551579597532722083359751119723782698191293881355319}{49006804076455695203825880950855693951956618347963166849} a^{8} + \frac{7603590055637101479343070655211730542721006826873956599}{49006804076455695203825880950855693951956618347963166849} a^{7} + \frac{1264683491145716794634482609745219238447058834759613023}{49006804076455695203825880950855693951956618347963166849} a^{6} + \frac{1063275589093932076988420075149496826780160087542418050}{49006804076455695203825880950855693951956618347963166849} a^{5} - \frac{20854797219727248637452162250371155138231123935344083745}{49006804076455695203825880950855693951956618347963166849} a^{4} - \frac{21280762786004902312062800841269289686360503186622376880}{49006804076455695203825880950855693951956618347963166849} a^{3} - \frac{17956934516924026683980392049310348487612047361807857}{82642165390313145369014976308356988114598007332146993} a^{2} - \frac{3821474405290871721265337024871879259401543576631205087}{49006804076455695203825880950855693951956618347963166849} a + \frac{5470319409390405179133691026977264037157524653970168580}{49006804076455695203825880950855693951956618347963166849}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{93339}$, which has order $93339$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.0329443 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-31}) \), \(\Q(\zeta_{9})^+\), 6.0.195458751.1, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ $18$ $18$ R ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
31Data not computed