Normalized defining polynomial
\( x^{18} - 102 x^{15} + 4291 x^{12} - 95314 x^{9} + 1234873 x^{6} - 9161192 x^{3} + 31554496 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2590172963585338621461271780963152123=-\,3^{27}\cdot 8353^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 8353$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6734964706792} a^{15} + \frac{198911212119}{3367482353396} a^{12} + \frac{170821876391}{6734964706792} a^{9} + \frac{1207467533917}{3367482353396} a^{6} - \frac{2767337002767}{6734964706792} a^{3} + \frac{394095185880}{841870588349}$, $\frac{1}{1064124423673136} a^{16} - \frac{63783253502405}{532062211836568} a^{13} - \frac{20034072243985}{1064124423673136} a^{10} + \frac{11309914594105}{532062211836568} a^{7} - \frac{332780607635575}{1064124423673136} a^{4} + \frac{8615753476430}{66507776479571} a$, $\frac{1}{168131658940355488} a^{17} + \frac{10178414324351529}{84065829470177744} a^{14} - \frac{10927309414893629}{168131658940355488} a^{11} - \frac{7570576604076989}{84065829470177744} a^{8} - \frac{33320637741502791}{168131658940355488} a^{5} + \frac{740201294751711}{10508228683772218} a^{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{147880970057}{168131658940355488} a^{17} - \frac{6709146409867}{84065829470177744} a^{14} + \frac{483620125697355}{168131658940355488} a^{11} - \frac{4291589818102949}{84065829470177744} a^{8} + \frac{81421634206003817}{168131658940355488} a^{5} - \frac{21263883853044549}{10508228683772218} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 359949824121.8046 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), 6.0.1373334262947.1, \(\Q(\zeta_{9})\), 6.0.1883860443.1, Deg 6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 8353 | Data not computed | ||||||