Normalized defining polynomial
\( x^{18} - 9 x^{17} + 49 x^{16} - 188 x^{15} + 557 x^{14} - 1323 x^{13} + 2498 x^{12} - 3691 x^{11} + 5274 x^{10} - 8957 x^{9} + 16214 x^{8} - 24727 x^{7} + 31261 x^{6} - 32340 x^{5} + 13457 x^{4} + 9905 x^{3} - 3111 x^{2} - 4870 x + 19900 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2587493762586279810794282003=-\,7^{12}\cdot 83^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{7}{16} a^{3} - \frac{7}{16} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} + \frac{1}{8} a^{3} + \frac{3}{16} a^{2} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{32} a^{8} + \frac{3}{16} a^{7} - \frac{5}{32} a^{6} + \frac{1}{8} a^{5} + \frac{1}{32} a^{4} - \frac{3}{8} a^{3} + \frac{7}{32} a^{2} + \frac{3}{16} a - \frac{1}{8}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} - \frac{5}{32} a^{7} + \frac{1}{8} a^{6} + \frac{1}{32} a^{5} + \frac{1}{8} a^{4} + \frac{7}{32} a^{3} + \frac{7}{16} a^{2} + \frac{3}{8} a$, $\frac{1}{1280} a^{14} - \frac{7}{1280} a^{13} + \frac{3}{640} a^{12} - \frac{5}{256} a^{11} + \frac{1}{640} a^{10} + \frac{119}{1280} a^{9} + \frac{1}{10} a^{8} + \frac{29}{256} a^{7} - \frac{143}{640} a^{6} - \frac{11}{256} a^{5} - \frac{51}{640} a^{4} + \frac{201}{1280} a^{3} - \frac{229}{1280} a^{2} + \frac{211}{640} a - \frac{11}{64}$, $\frac{1}{1280} a^{15} - \frac{3}{1280} a^{13} + \frac{17}{1280} a^{12} + \frac{27}{1280} a^{11} - \frac{27}{1280} a^{10} + \frac{41}{1280} a^{9} + \frac{81}{1280} a^{8} + \frac{49}{1280} a^{7} - \frac{297}{1280} a^{6} + \frac{273}{1280} a^{5} - \frac{193}{1280} a^{4} - \frac{71}{640} a^{3} + \frac{579}{1280} a^{2} - \frac{73}{640} a - \frac{29}{64}$, $\frac{1}{3579074368000} a^{16} - \frac{1}{447384296000} a^{15} + \frac{333116219}{894768592000} a^{14} - \frac{1165906749}{447384296000} a^{13} - \frac{386833427}{143162974720} a^{12} - \frac{22206416209}{1789537184000} a^{11} + \frac{7292392651}{715814873600} a^{10} + \frac{94459192517}{1789537184000} a^{9} + \frac{108843512833}{3579074368000} a^{8} + \frac{168444380483}{1789537184000} a^{7} - \frac{44546337773}{715814873600} a^{6} + \frac{297317865259}{1789537184000} a^{5} - \frac{17764028287}{447384296000} a^{4} - \frac{870214861303}{1789537184000} a^{3} - \frac{390876812909}{3579074368000} a^{2} - \frac{695912610357}{1789537184000} a + \frac{79183061723}{178953718400}$, $\frac{1}{27061381296448000} a^{17} + \frac{943}{6765345324112000} a^{16} - \frac{93004869657}{13530690648224000} a^{15} - \frac{1034598946753}{6765345324112000} a^{14} + \frac{56042946770903}{5412276259289600} a^{13} - \frac{105566251974717}{6765345324112000} a^{12} - \frac{135001454195587}{5412276259289600} a^{11} + \frac{95338976594123}{3382672662056000} a^{10} + \frac{101893841461703}{27061381296448000} a^{9} - \frac{673194216604661}{6765345324112000} a^{8} - \frac{1154232984183287}{5412276259289600} a^{7} - \frac{586451584070779}{3382672662056000} a^{6} - \frac{3157007559786053}{13530690648224000} a^{5} - \frac{800933571854817}{3382672662056000} a^{4} + \frac{8556231705105011}{27061381296448000} a^{3} + \frac{977144150704729}{6765345324112000} a^{2} - \frac{256247573723059}{676534532411200} a + \frac{58326958213599}{135306906482240}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5709912.4286 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 3.1.83.1 x3, 6.0.571787.1, 9.1.5583424007329.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.3 | $x^{9} - 14 x^{6} + 49 x^{3} - 1372$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 7.9.6.3 | $x^{9} - 14 x^{6} + 49 x^{3} - 1372$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |