Normalized defining polynomial
\( x^{18} + 72 x^{16} + 2655 x^{14} + 63384 x^{12} + 1064547 x^{10} - 2 x^{9} + 12937608 x^{8} + 738 x^{7} + 113290266 x^{6} - 29034 x^{5} + 688088160 x^{4} + 236460 x^{3} + 2631789081 x^{2} - 334818 x + 4843960811 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-258151783382020583032356864000000000=-\,2^{27}\cdot 3^{44}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1080=2^{3}\cdot 3^{3}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1080}(1,·)$, $\chi_{1080}(259,·)$, $\chi_{1080}(961,·)$, $\chi_{1080}(841,·)$, $\chi_{1080}(139,·)$, $\chi_{1080}(721,·)$, $\chi_{1080}(19,·)$, $\chi_{1080}(601,·)$, $\chi_{1080}(859,·)$, $\chi_{1080}(979,·)$, $\chi_{1080}(481,·)$, $\chi_{1080}(739,·)$, $\chi_{1080}(361,·)$, $\chi_{1080}(619,·)$, $\chi_{1080}(241,·)$, $\chi_{1080}(499,·)$, $\chi_{1080}(121,·)$, $\chi_{1080}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{184125042691347889429331094901843541102786395051327075976809} a^{17} - \frac{51323050845853779546199870663092445934563941269658622654607}{184125042691347889429331094901843541102786395051327075976809} a^{16} - \frac{17316497980587398510982517736124799071135102418567233901031}{184125042691347889429331094901843541102786395051327075976809} a^{15} - \frac{26304136847665600776728382941120544031538630263376443356973}{184125042691347889429331094901843541102786395051327075976809} a^{14} - \frac{10448524213724061836741577162561304685249082027725495349773}{184125042691347889429331094901843541102786395051327075976809} a^{13} + \frac{14667930758271240508021631200063944997368404563006589587353}{184125042691347889429331094901843541102786395051327075976809} a^{12} + \frac{17249691063328248638836916091271903788146244746563579166105}{184125042691347889429331094901843541102786395051327075976809} a^{11} - \frac{47237348716651605756503966197659552325937848827930699781194}{184125042691347889429331094901843541102786395051327075976809} a^{10} + \frac{61650379371522435769502439973708747250455646900801018551945}{184125042691347889429331094901843541102786395051327075976809} a^{9} + \frac{78940648108920398953440810036981431884611664528368599942161}{184125042691347889429331094901843541102786395051327075976809} a^{8} - \frac{42203643286385616733151476290182110274589156673434719105827}{184125042691347889429331094901843541102786395051327075976809} a^{7} - \frac{61958491214153839458321585477072053198767151445251085016038}{184125042691347889429331094901843541102786395051327075976809} a^{6} - \frac{50548866930024237413422407176153603988413425410456964261749}{184125042691347889429331094901843541102786395051327075976809} a^{5} + \frac{24659446821746584443232780441522604928999461553337809045684}{184125042691347889429331094901843541102786395051327075976809} a^{4} - \frac{31612836608758053125068706965163565712724969500833983364612}{184125042691347889429331094901843541102786395051327075976809} a^{3} - \frac{29684681514207251719686418409076899930036662072382634970647}{184125042691347889429331094901843541102786395051327075976809} a^{2} - \frac{85338805100421211180857381461751809711780649191497834021201}{184125042691347889429331094901843541102786395051327075976809} a - \frac{1672391528826620245932681159515252711618292184943135906506}{3474057409270714894893039526449878134014837642477869358053}$
Class group and class number
$C_{256298}$, which has order $256298$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\zeta_{9})^+\), 6.0.419904000.3, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||