Normalized defining polynomial
\( x^{18} + 18 x^{16} + 135 x^{14} + 564 x^{12} + 1503 x^{10} + 2754 x^{8} + 3465 x^{6} + 2808 x^{4} + 1296 x^{2} + 12544 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-258151783382020583032356864=-\,2^{18}\cdot 3^{44}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{3}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{112} a^{9} - \frac{5}{112} a^{7} - \frac{1}{112} a^{5} - \frac{1}{4} a^{4} + \frac{25}{112} a^{3} - \frac{1}{4} a^{2} + \frac{9}{28} a$, $\frac{1}{224} a^{10} - \frac{5}{224} a^{8} + \frac{27}{224} a^{6} + \frac{53}{224} a^{4} + \frac{9}{56} a^{2} - \frac{1}{2} a$, $\frac{1}{224} a^{11} - \frac{1}{224} a^{9} + \frac{1}{32} a^{7} - \frac{1}{32} a^{5} - \frac{1}{4} a^{4} - \frac{1}{7} a^{3} + \frac{1}{4} a^{2} + \frac{1}{7} a$, $\frac{1}{1792} a^{12} - \frac{1}{448} a^{10} + \frac{11}{896} a^{8} - \frac{1}{16} a^{7} + \frac{5}{112} a^{6} + \frac{425}{1792} a^{4} + \frac{1}{16} a^{3} - \frac{19}{448} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1792} a^{13} - \frac{1}{448} a^{11} + \frac{3}{896} a^{9} + \frac{3}{112} a^{7} - \frac{1}{256} a^{5} - \frac{1}{4} a^{4} - \frac{13}{64} a^{3} + \frac{1}{4} a^{2} - \frac{9}{28} a$, $\frac{1}{3584} a^{14} - \frac{1}{3584} a^{13} - \frac{1}{896} a^{11} - \frac{1}{1792} a^{10} + \frac{1}{1792} a^{9} + \frac{3}{112} a^{8} - \frac{13}{448} a^{7} - \frac{367}{3584} a^{6} + \frac{9}{512} a^{5} - \frac{15}{112} a^{4} - \frac{69}{896} a^{3} + \frac{103}{224} a^{2} + \frac{19}{56} a - \frac{1}{2}$, $\frac{1}{3584} a^{15} - \frac{1}{3584} a^{13} - \frac{3}{1792} a^{11} + \frac{1}{1792} a^{9} + \frac{9}{3584} a^{7} - \frac{1}{8} a^{6} - \frac{321}{3584} a^{5} - \frac{1}{4} a^{4} + \frac{191}{896} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a$, $\frac{1}{14336} a^{16} + \frac{1}{14336} a^{14} - \frac{1}{7168} a^{12} + \frac{15}{7168} a^{10} - \frac{57}{2048} a^{8} + \frac{561}{14336} a^{6} + \frac{113}{896} a^{4} - \frac{1}{4} a^{3} + \frac{99}{896} a^{2} - \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{28672} a^{17} - \frac{1}{28672} a^{16} + \frac{1}{28672} a^{15} - \frac{1}{28672} a^{14} - \frac{1}{14336} a^{13} - \frac{3}{14336} a^{12} + \frac{15}{14336} a^{11} - \frac{31}{14336} a^{10} + \frac{113}{28672} a^{9} - \frac{353}{28672} a^{8} - \frac{207}{28672} a^{7} + \frac{655}{28672} a^{6} - \frac{143}{1792} a^{5} - \frac{515}{3584} a^{4} - \frac{333}{1792} a^{3} + \frac{691}{1792} a^{2} - \frac{5}{112} a + \frac{5}{16}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{112} a^{9} - \frac{9}{112} a^{7} - \frac{27}{112} a^{5} - \frac{39}{112} a^{3} - \frac{9}{28} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 326412091.549 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.324.1 x3, 6.0.419904.2, 9.1.8033551259904.2 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||