Normalized defining polynomial
\( x^{18} + 18 x^{16} + 135 x^{14} + 546 x^{12} + 1287 x^{10} + 1782 x^{8} + 1386 x^{6} + 540 x^{4} + 81 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-258151783382020583032356864=-\,2^{18}\cdot 3^{44}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(108=2^{2}\cdot 3^{3}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{108}(1,·)$, $\chi_{108}(67,·)$, $\chi_{108}(7,·)$, $\chi_{108}(73,·)$, $\chi_{108}(13,·)$, $\chi_{108}(79,·)$, $\chi_{108}(19,·)$, $\chi_{108}(85,·)$, $\chi_{108}(25,·)$, $\chi_{108}(91,·)$, $\chi_{108}(31,·)$, $\chi_{108}(97,·)$, $\chi_{108}(37,·)$, $\chi_{108}(103,·)$, $\chi_{108}(43,·)$, $\chi_{108}(49,·)$, $\chi_{108}(55,·)$, $\chi_{108}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$
Class group and class number
$C_{19}$, which has order $19$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( a^{9} + 9 a^{7} + 27 a^{5} + 30 a^{3} + 9 a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{3} + 3 a \), \( a^{9} + 9 a^{7} + 27 a^{5} + 29 a^{3} + 6 a \), \( a^{17} + 16 a^{15} + 104 a^{13} + 353 a^{11} + 670 a^{9} + 707 a^{7} + 387 a^{5} + 93 a^{3} + 6 a \), \( a^{11} + 11 a^{9} + 44 a^{7} + 77 a^{5} + 55 a^{3} + 11 a \), \( a^{7} + 7 a^{5} + 14 a^{3} + 7 a \), \( a^{8} + 9 a^{6} + 27 a^{4} + 30 a^{2} + 9 \), \( a^{12} + 11 a^{10} + 45 a^{8} + 84 a^{6} + 70 a^{4} + 21 a^{2} + 1 \), \( a^{5} + 5 a^{3} + 5 a \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{9})^+\), 6.0.419904.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||