Normalized defining polynomial
\( x^{18} + 18 x^{16} - 18 x^{15} + 135 x^{14} - 270 x^{13} + 699 x^{12} - 1620 x^{11} + 3123 x^{10} - 5760 x^{9} + 10044 x^{8} - 15390 x^{7} + 21528 x^{6} - 28674 x^{5} + 34641 x^{4} - 33822 x^{3} + 32643 x^{2} - 28566 x + 12301 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-258151783382020583032356864=-\,2^{18}\cdot 3^{44}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{3}{16} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a - \frac{3}{16}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{7}{16} a - \frac{1}{4}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{3}{16} a^{6} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} + \frac{5}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{112784} a^{15} + \frac{15}{112784} a^{13} + \frac{48}{7049} a^{12} + \frac{45}{56392} a^{11} + \frac{576}{7049} a^{10} + \frac{307}{7049} a^{9} - \frac{1865}{14098} a^{8} - \frac{14209}{112784} a^{7} + \frac{11441}{56392} a^{6} + \frac{12793}{112784} a^{5} - \frac{4051}{28196} a^{4} - \frac{34745}{112784} a^{3} - \frac{16515}{56392} a^{2} - \frac{29101}{112784} a - \frac{3483}{56392}$, $\frac{1}{112784} a^{16} + \frac{15}{112784} a^{14} + \frac{48}{7049} a^{13} + \frac{45}{56392} a^{12} + \frac{576}{7049} a^{11} + \frac{307}{7049} a^{10} + \frac{3319}{28196} a^{9} - \frac{14209}{112784} a^{8} - \frac{2657}{56392} a^{7} - \frac{15403}{112784} a^{6} - \frac{2775}{7049} a^{5} + \frac{21647}{112784} a^{4} + \frac{11681}{56392} a^{3} + \frac{55487}{112784} a^{2} + \frac{10615}{56392} a - \frac{1}{4}$, $\frac{1}{467038544} a^{17} - \frac{13}{66719792} a^{16} + \frac{17}{467038544} a^{15} - \frac{11405879}{467038544} a^{14} - \frac{342785}{12290488} a^{13} - \frac{1960263}{66719792} a^{12} + \frac{5106555}{116759636} a^{11} - \frac{5313989}{58379818} a^{10} + \frac{14732337}{467038544} a^{9} - \frac{11604219}{66719792} a^{8} + \frac{12155191}{467038544} a^{7} - \frac{88147459}{467038544} a^{6} - \frac{195032519}{467038544} a^{5} - \frac{189097}{5695592} a^{4} + \frac{204339363}{467038544} a^{3} + \frac{1524559}{24580976} a^{2} + \frac{16665309}{58379818} a - \frac{89952123}{467038544}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{81}{56392} a^{15} + \frac{1215}{56392} a^{13} - \frac{1233}{56392} a^{12} + \frac{3645}{28196} a^{11} - \frac{3699}{14098} a^{10} + \frac{7831}{14098} a^{9} - \frac{33291}{28196} a^{8} + \frac{117891}{56392} a^{7} - \frac{88335}{28196} a^{6} + \frac{274941}{56392} a^{5} - \frac{360909}{56392} a^{4} + \frac{399999}{56392} a^{3} - \frac{195777}{28196} a^{2} + \frac{434223}{56392} a - \frac{247041}{56392} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1082911.90412 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_9$ (as 18T19):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times D_9$ |
| Character table for $C_3\times D_9$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.324.1 x3, 6.0.419904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||