Normalized defining polynomial
\( x^{18} + 27 x^{14} + 207 x^{10} - 4 x^{9} + 126 x^{7} + 414 x^{6} + 108 x^{5} - 420 x^{3} + 81 x^{2} - 36 x + 53 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-258151783382020583032356864=-\,2^{18}\cdot 3^{44}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} + \frac{2}{17} a^{13} - \frac{1}{17} a^{12} + \frac{6}{17} a^{11} - \frac{4}{17} a^{10} - \frac{3}{17} a^{9} + \frac{2}{17} a^{8} + \frac{4}{17} a^{7} - \frac{6}{17} a^{6} - \frac{3}{17} a^{5} - \frac{4}{17} a^{4} - \frac{5}{17} a^{3} + \frac{7}{17} a^{2} + \frac{4}{17} a - \frac{2}{17}$, $\frac{1}{17} a^{15} - \frac{5}{17} a^{13} + \frac{8}{17} a^{12} + \frac{1}{17} a^{11} + \frac{5}{17} a^{10} + \frac{8}{17} a^{9} + \frac{3}{17} a^{7} - \frac{8}{17} a^{6} + \frac{2}{17} a^{5} + \frac{3}{17} a^{4} + \frac{7}{17} a^{2} + \frac{7}{17} a + \frac{4}{17}$, $\frac{1}{901} a^{16} + \frac{7}{901} a^{15} + \frac{25}{901} a^{14} - \frac{205}{901} a^{13} + \frac{112}{901} a^{12} + \frac{192}{901} a^{11} + \frac{246}{901} a^{10} - \frac{17}{53} a^{9} - \frac{141}{901} a^{8} - \frac{309}{901} a^{7} + \frac{55}{901} a^{6} - \frac{447}{901} a^{5} + \frac{258}{901} a^{4} - \frac{449}{901} a^{3} - \frac{431}{901} a^{2} + \frac{343}{901} a + \frac{1}{17}$, $\frac{1}{635284611710525863} a^{17} - \frac{141386059046440}{635284611710525863} a^{16} + \frac{10881961980641360}{635284611710525863} a^{15} + \frac{4857616205820440}{635284611710525863} a^{14} - \frac{151280167237227152}{635284611710525863} a^{13} + \frac{58580325346194888}{635284611710525863} a^{12} - \frac{185721608246320548}{635284611710525863} a^{11} + \frac{143195504571909386}{635284611710525863} a^{10} - \frac{100207620574289685}{635284611710525863} a^{9} + \frac{15582212373226479}{635284611710525863} a^{8} - \frac{10207437251099547}{635284611710525863} a^{7} + \frac{170148947999835568}{635284611710525863} a^{6} - \frac{179358555263269974}{635284611710525863} a^{5} + \frac{229948336474797666}{635284611710525863} a^{4} + \frac{6047943882442637}{635284611710525863} a^{3} + \frac{286423400023955873}{635284611710525863} a^{2} - \frac{87534211158811483}{635284611710525863} a - \frac{4528187657932765}{11986502107745771}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1392129849823263}{37369683041795639} a^{17} - \frac{607185296487675}{37369683041795639} a^{16} - \frac{400021327070577}{37369683041795639} a^{15} - \frac{353558510578890}{37369683041795639} a^{14} - \frac{37736195194655964}{37369683041795639} a^{13} - \frac{16494113439107079}{37369683041795639} a^{12} - \frac{10889765889975468}{37369683041795639} a^{11} - \frac{9641840493252681}{37369683041795639} a^{10} - \frac{292208864248792427}{37369683041795639} a^{9} - \frac{122844392437665240}{37369683041795639} a^{8} - \frac{82806115356772902}{37369683041795639} a^{7} - \frac{249783981729833358}{37369683041795639} a^{6} - \frac{682842741994370016}{37369683041795639} a^{5} - \frac{472870893531147408}{37369683041795639} a^{4} - \frac{294397377777052872}{37369683041795639} a^{3} + \frac{346609945907324892}{37369683041795639} a^{2} + \frac{25459906136050431}{37369683041795639} a + \frac{1801157999863805}{705088359279163} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1803849.29799 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_9\times S_3$ (as 18T16):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_9\times S_3$ |
| Character table for $C_9\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{9})^+\), 6.0.419904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||