Normalized defining polynomial
\( x^{18} + 27 x^{16} - 60 x^{15} + 540 x^{14} - 1188 x^{13} + 5961 x^{12} - 14364 x^{11} + 46620 x^{10} - 80304 x^{9} + 142317 x^{8} - 137592 x^{7} + 164619 x^{6} - 111132 x^{5} + 124362 x^{4} - 49392 x^{3} + 31752 x^{2} + 5292 x + 1764 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-25528356304590234835421802344448=-\,2^{12}\cdot 3^{37}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{18} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{18} a^{10} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{18} a^{11} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{126} a^{12} - \frac{1}{126} a^{10} + \frac{1}{42} a^{9} - \frac{3}{14} a^{8} - \frac{11}{42} a^{7} + \frac{10}{21} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{378} a^{13} + \frac{1}{63} a^{11} + \frac{1}{126} a^{10} - \frac{1}{63} a^{9} - \frac{10}{21} a^{8} + \frac{41}{126} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{5}{18} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{378} a^{14} + \frac{1}{126} a^{11} - \frac{1}{42} a^{9} + \frac{16}{63} a^{8} - \frac{1}{7} a^{7} - \frac{5}{42} a^{6} + \frac{5}{18} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{756} a^{15} - \frac{1}{756} a^{14} - \frac{1}{756} a^{13} - \frac{1}{84} a^{11} - \frac{1}{84} a^{10} - \frac{1}{252} a^{9} - \frac{13}{126} a^{8} + \frac{121}{252} a^{7} + \frac{53}{252} a^{6} + \frac{7}{36} a^{5} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{70847028} a^{16} - \frac{241}{7871892} a^{15} + \frac{48395}{70847028} a^{14} + \frac{4889}{35423514} a^{13} - \frac{9851}{3373668} a^{12} + \frac{87391}{3373668} a^{11} + \frac{364579}{23615676} a^{10} + \frac{41957}{1686834} a^{9} + \frac{714733}{23615676} a^{8} - \frac{80207}{23615676} a^{7} + \frac{1212039}{2623964} a^{6} - \frac{799057}{1686834} a^{5} - \frac{378424}{843417} a^{4} - \frac{139154}{281139} a^{3} + \frac{30570}{93713} a^{2} - \frac{6415}{93713} a - \frac{16648}{281139}$, $\frac{1}{65167891463955337324092} a^{17} - \frac{40881476422375}{9309698780565048189156} a^{16} + \frac{15188030850429725581}{65167891463955337324092} a^{15} - \frac{2806091200160891305}{5430657621996278110341} a^{14} + \frac{13529405972750199467}{21722630487985112441364} a^{13} - \frac{17056822591622654245}{7240876829328370813788} a^{12} + \frac{385309094633540683465}{21722630487985112441364} a^{11} - \frac{19523532488353175494}{775808231713754015763} a^{10} - \frac{39449184852492087817}{3103232926855016063052} a^{9} + \frac{805980675615497608151}{3103232926855016063052} a^{8} + \frac{65434142635211557549}{443318989550716580436} a^{7} + \frac{41148807254874000620}{110829747387679145109} a^{6} + \frac{81910088471174939698}{258602743904584671921} a^{5} - \frac{7794529470776218277}{36943249129226381703} a^{4} + \frac{2594748486040215776}{36943249129226381703} a^{3} + \frac{5862719067383463826}{36943249129226381703} a^{2} - \frac{3506505427470240391}{36943249129226381703} a - \frac{1649055301865163068}{12314416376408793901}$
Class group and class number
$C_{48}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2325190665193535}{21557357414474144004} a^{17} + \frac{1753681715771}{57030046070037418} a^{16} - \frac{2311560989844931}{798420644980523852} a^{15} + \frac{13109157512305780}{1796446451206178667} a^{14} - \frac{11902529402732243}{199605161245130963} a^{13} + \frac{171986341320356987}{1197630967470785778} a^{12} - \frac{4814735685459545189}{7185785804824714668} a^{11} + \frac{13933423833653157}{8147149438576774} a^{10} - \frac{152966526185653177}{28515023035018709} a^{9} + \frac{5045563357765921279}{513270414630336762} a^{8} - \frac{1936737477356035083}{114060092140074836} a^{7} + \frac{1010433748731686365}{57030046070037418} a^{6} - \frac{6642200328446986099}{342180276420224508} a^{5} + \frac{59736978664021506}{4073574719288387} a^{4} - \frac{117502091927488145}{8147149438576774} a^{3} + \frac{198309135031242791}{24441448315730322} a^{2} - \frac{13377240741357000}{4073574719288387} a + \frac{1924239635074046}{4073574719288387} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65376984.0719 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.756.1, 6.0.1714608.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |