Normalized defining polynomial
\( x^{18} - x^{17} + 153 x^{16} - 153 x^{15} + 9881 x^{14} - 9881 x^{13} + 350361 x^{12} - 350361 x^{11} + 7432345 x^{10} - 7432345 x^{9} + 96463001 x^{8} - 96463001 x^{7} + 753920153 x^{6} - 753920153 x^{5} + 3383748761 x^{4} - 3383748761 x^{3} + 8165255321 x^{2} - 8165255321 x + 10715392153 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-254352889166747560743047516520738867=-\,3^{9}\cdot 11^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(627=3\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{627}(1,·)$, $\chi_{627}(65,·)$, $\chi_{627}(395,·)$, $\chi_{627}(397,·)$, $\chi_{627}(527,·)$, $\chi_{627}(529,·)$, $\chi_{627}(595,·)$, $\chi_{627}(100,·)$, $\chi_{627}(463,·)$, $\chi_{627}(32,·)$, $\chi_{627}(98,·)$, $\chi_{627}(164,·)$, $\chi_{627}(230,·)$, $\chi_{627}(232,·)$, $\chi_{627}(199,·)$, $\chi_{627}(428,·)$, $\chi_{627}(626,·)$, $\chi_{627}(562,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1869986953} a^{10} + \frac{670841598}{1869986953} a^{9} + \frac{80}{1869986953} a^{8} - \frac{319065722}{1869986953} a^{7} + \frac{2240}{1869986953} a^{6} - \frac{177629516}{1869986953} a^{5} + \frac{25600}{1869986953} a^{4} + \frac{498834250}{1869986953} a^{3} + \frac{102400}{1869986953} a^{2} - \frac{672784753}{1869986953} a + \frac{65536}{1869986953}$, $\frac{1}{1869986953} a^{11} + \frac{88}{1869986953} a^{9} + \frac{243228075}{1869986953} a^{8} + \frac{2816}{1869986953} a^{7} + \frac{606701176}{1869986953} a^{6} + \frac{39424}{1869986953} a^{5} + \frac{914101802}{1869986953} a^{4} + \frac{225280}{1869986953} a^{3} - \frac{881701498}{1869986953} a^{2} + \frac{360448}{1869986953} a - \frac{881701498}{1869986953}$, $\frac{1}{1869986953} a^{12} - \frac{821237006}{1869986953} a^{9} - \frac{4224}{1869986953} a^{8} + \frac{634680417}{1869986953} a^{7} - \frac{157696}{1869986953} a^{6} - \frac{284383367}{1869986953} a^{5} - \frac{2027520}{1869986953} a^{4} + \frac{100571374}{1869986953} a^{3} - \frac{8650752}{1869986953} a^{2} + \frac{353761223}{1869986953} a - \frac{5767168}{1869986953}$, $\frac{1}{1869986953} a^{13} - \frac{4992}{1869986953} a^{9} + \frac{884097542}{1869986953} a^{8} - \frac{212992}{1869986953} a^{7} - \frac{780651679}{1869986953} a^{6} - \frac{3354624}{1869986953} a^{5} - \frac{495387605}{1869986953} a^{4} - \frac{20447232}{1869986953} a^{3} - \frac{160087740}{1869986953} a^{2} - \frac{34078720}{1869986953} a + \frac{493930923}{1869986953}$, $\frac{1}{1869986953} a^{14} + \frac{578721935}{1869986953} a^{9} + \frac{186368}{1869986953} a^{8} - \frac{327851947}{1869986953} a^{7} + \frac{7827456}{1869986953} a^{6} - \frac{848115755}{1869986953} a^{5} + \frac{107347968}{1869986953} a^{4} - \frac{802133136}{1869986953} a^{3} + \frac{477102080}{1869986953} a^{2} + \frac{449011535}{1869986953} a + \frac{327155712}{1869986953}$, $\frac{1}{1869986953} a^{15} + \frac{232960}{1869986953} a^{9} + \frac{124067078}{1869986953} a^{8} + \frac{11182080}{1869986953} a^{7} + \frac{585695227}{1869986953} a^{6} + \frac{187858944}{1869986953} a^{5} - \frac{177040517}{1869986953} a^{4} - \frac{677231753}{1869986953} a^{3} - \frac{790591895}{1869986953} a^{2} + \frac{174736247}{1869986953} a - \frac{45351414}{1869986953}$, $\frac{1}{1869986953} a^{16} - \frac{584966886}{1869986953} a^{9} - \frac{7454720}{1869986953} a^{8} + \frac{24897550}{1869986953} a^{7} - \frac{333971456}{1869986953} a^{6} - \frac{546276094}{1869986953} a^{5} + \frac{838940059}{1869986953} a^{4} - \frac{748264663}{1869986953} a^{3} + \frac{629462636}{1869986953} a^{2} + \frac{804228724}{1869986953} a - \frac{307370936}{1869986953}$, $\frac{1}{1869986953} a^{17} - \frac{9748480}{1869986953} a^{9} + \frac{72574605}{1869986953} a^{8} - \frac{499122176}{1869986953} a^{7} + \frac{788681446}{1869986953} a^{6} + \frac{615296685}{1869986953} a^{5} - \frac{451502687}{1869986953} a^{4} + \frac{927061143}{1869986953} a^{3} + \frac{121289675}{1869986953} a^{2} - \frac{715126691}{1869986953} a - \frac{212682557}{1869986953}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{25708}$, which has order $411328$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-627}) \), 3.3.361.1, 6.0.88983569763.2, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||