Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 81 x^{15} + 105 x^{14} - 63 x^{13} - 21 x^{12} + 72 x^{11} - 63 x^{10} + 27 x^{9} - 6 x^{6} - 9 x^{5} + 18 x^{4} - 9 x^{2} + 3 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2529990231179046912=-\,2^{12}\cdot 3^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{159031} a^{17} + \frac{66377}{159031} a^{16} + \frac{72610}{159031} a^{15} + \frac{57769}{159031} a^{14} + \frac{20374}{159031} a^{13} - \frac{10354}{159031} a^{12} - \frac{28683}{159031} a^{11} - \frac{71403}{159031} a^{10} + \frac{77396}{159031} a^{9} + \frac{37335}{159031} a^{8} + \frac{23175}{159031} a^{7} + \frac{29656}{159031} a^{6} - \frac{60570}{159031} a^{5} - \frac{60225}{159031} a^{4} - \frac{57492}{159031} a^{3} - \frac{78943}{159031} a^{2} - \frac{2433}{159031} a + \frac{58358}{159031}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{160828}{159031} a^{17} + \frac{1425060}{159031} a^{16} - \frac{5322773}{159031} a^{15} + \frac{10373365}{159031} a^{14} - \frac{9576808}{159031} a^{13} - \frac{636613}{159031} a^{12} + \frac{10672384}{159031} a^{11} - \frac{10840934}{159031} a^{10} + \frac{5478567}{159031} a^{9} - \frac{457006}{159031} a^{8} - \frac{1569663}{159031} a^{7} - \frac{652571}{159031} a^{6} + \frac{862241}{159031} a^{5} + \frac{3263865}{159031} a^{4} - \frac{1806367}{159031} a^{3} - \frac{1744422}{159031} a^{2} + \frac{555357}{159031} a + \frac{886289}{159031} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 404.056392969 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, \(\Q(\zeta_{9})^+\), 6.0.34992.1, 6.0.314928.1 x2, \(\Q(\zeta_{9})\), 9.3.918330048.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.314928.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||