Normalized defining polynomial
\( x^{18} - 3 x^{17} - 90 x^{16} + 552 x^{15} + 2088 x^{14} - 27972 x^{13} + 69750 x^{12} + 183762 x^{11} - 1217997 x^{10} + 174591 x^{9} + 18161604 x^{8} - 86162778 x^{7} + 256504212 x^{6} - 660915288 x^{5} + 1700179632 x^{4} - 3807067392 x^{3} + 6631652736 x^{2} - 7430247936 x + 4958060544 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-252684888709680386611475206914860544000000000=-\,2^{18}\cdot 3^{31}\cdot 5^{9}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $292.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{24} a^{8} - \frac{1}{12} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{216} a^{9} + \frac{1}{72} a^{8} + \frac{1}{36} a^{6} - \frac{1}{24} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{432} a^{10} - \frac{1}{432} a^{9} + \frac{1}{72} a^{8} + \frac{1}{72} a^{7} + \frac{1}{144} a^{6} + \frac{1}{48} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{432} a^{11} - \frac{1}{432} a^{9} - \frac{1}{72} a^{8} + \frac{1}{48} a^{7} + \frac{1}{36} a^{6} + \frac{1}{48} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{1728} a^{12} - \frac{1}{864} a^{11} - \frac{1}{1728} a^{10} - \frac{1}{576} a^{8} - \frac{7}{288} a^{7} + \frac{5}{192} a^{6} - \frac{1}{48} a^{5} - \frac{3}{32} a^{4} - \frac{1}{12} a^{3} + \frac{7}{24} a^{2} - \frac{1}{6} a$, $\frac{1}{1728} a^{13} - \frac{1}{1728} a^{11} - \frac{1}{864} a^{10} + \frac{1}{1728} a^{9} + \frac{1}{72} a^{8} - \frac{1}{576} a^{7} + \frac{1}{288} a^{6} + \frac{1}{96} a^{5} - \frac{7}{48} a^{4} + \frac{1}{4} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{10368} a^{14} - \frac{1}{3456} a^{13} - \frac{1}{3456} a^{12} + \frac{1}{1152} a^{11} + \frac{1}{1152} a^{10} - \frac{5}{3456} a^{9} - \frac{7}{384} a^{8} + \frac{5}{384} a^{7} - \frac{5}{576} a^{6} + \frac{13}{576} a^{5} + \frac{5}{24} a^{4} - \frac{7}{48} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{10368} a^{15} - \frac{1}{864} a^{10} - \frac{1}{1728} a^{9} + \frac{1}{72} a^{8} + \frac{7}{1152} a^{7} + \frac{1}{288} a^{6} - \frac{11}{192} a^{5} - \frac{1}{16} a^{4} - \frac{23}{48} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{41472} a^{16} - \frac{1}{20736} a^{14} - \frac{1}{6912} a^{13} + \frac{1}{6912} a^{12} + \frac{5}{6912} a^{11} + \frac{11}{6912} a^{9} - \frac{79}{4608} a^{8} - \frac{83}{2304} a^{7} - \frac{11}{2304} a^{6} - \frac{37}{1152} a^{5} + \frac{43}{192} a^{4} - \frac{23}{96} a^{3} + \frac{7}{24} a^{2} - \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{62968782306044578672335133879595263066576896} a^{17} + \frac{71237496591001281943450281240283543709}{7871097788255572334041891734949407883322112} a^{16} - \frac{471319183502079950816518519504625959573}{31484391153022289336167566939797631533288448} a^{15} + \frac{1271964586775357193975225722424468916541}{31484391153022289336167566939797631533288448} a^{14} - \frac{906720109869180500235023584568163054535}{10494797051007429778722522313265877177762816} a^{13} - \frac{2673472111651537768000168903218937586395}{10494797051007429778722522313265877177762816} a^{12} + \frac{787658540791205286538732587880618119763}{1311849631375928722340315289158234647220352} a^{11} - \frac{5163885972977999776206177988963526507581}{10494797051007429778722522313265877177762816} a^{10} + \frac{4196000280747058304796172404643357371697}{6996531367338286519148348208843918118508544} a^{9} + \frac{135253097637928947404153187879896966113}{6514461235882948341851348425366776646656} a^{8} + \frac{130927118208568460055250563998184405074273}{3498265683669143259574174104421959059254272} a^{7} + \frac{28816433334163215847490532639678054974327}{1749132841834571629787087052210979529627136} a^{6} + \frac{31092444054925293012971686813181439993727}{874566420917285814893543526105489764813568} a^{5} - \frac{4616061906485431332622430987509904879083}{145761070152880969148923921017581627468928} a^{4} - \frac{1052396571240633266004828423038369667409}{4555033442277530285903872531799425858404} a^{3} - \frac{4808617666036859688079545869275562762185}{18220133769110121143615490127197703433616} a^{2} - \frac{813740560195445706684642908953202592953}{4555033442277530285903872531799425858404} a + \frac{92968897857747878354165256371655792145}{379586120189794190491989377649952154867}$
Class group and class number
$C_{6}\times C_{6}\times C_{5198514}$, which has order $187146504$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15773424688.63964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.29241.1, 3.3.4104.1, 6.0.320638530375.8, 6.0.6316056000.5, 9.9.6566954215853707776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |