Normalized defining polynomial
\( x^{18} - 3 x^{17} + 13 x^{16} - 38 x^{15} + 58 x^{14} - 100 x^{13} - 41 x^{12} + 1255 x^{11} - 2627 x^{10} + 6918 x^{9} - 10699 x^{8} - 9658 x^{7} + 36052 x^{6} - 83059 x^{5} + 215570 x^{4} - 28704 x^{3} - 43068 x^{2} - 639812 x + 912673 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2506638307140843254915898467=-\,7^{12}\cdot 1399^{2}\cdot 4523^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 1399, 4523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{29} a^{15} + \frac{10}{29} a^{14} + \frac{1}{29} a^{13} - \frac{6}{29} a^{12} - \frac{11}{29} a^{11} - \frac{11}{29} a^{10} - \frac{6}{29} a^{9} - \frac{11}{29} a^{8} + \frac{1}{29} a^{7} + \frac{4}{29} a^{6} + \frac{4}{29} a^{5} - \frac{6}{29} a^{4} + \frac{11}{29} a^{3} - \frac{9}{29} a^{2} - \frac{5}{29} a - \frac{4}{29}$, $\frac{1}{2813} a^{16} - \frac{3}{2813} a^{15} + \frac{886}{2813} a^{14} - \frac{135}{2813} a^{13} - \frac{136}{2813} a^{12} - \frac{100}{2813} a^{11} + \frac{1123}{2813} a^{10} - \frac{1267}{2813} a^{9} - \frac{784}{2813} a^{8} - \frac{357}{2813} a^{7} + \frac{68}{2813} a^{6} - \frac{32}{97} a^{5} - \frac{1390}{2813} a^{4} + \frac{167}{2813} a^{3} - \frac{352}{2813} a^{2} + \frac{1366}{2813} a + \frac{11}{29}$, $\frac{1}{3308203377705608178254846514553285563923148827} a^{17} - \frac{374902716252469597336194929779586697486789}{3308203377705608178254846514553285563923148827} a^{16} + \frac{1064861667770996757380123478020196106501668}{3308203377705608178254846514553285563923148827} a^{15} - \frac{480943993296867248777379639785156938896252282}{3308203377705608178254846514553285563923148827} a^{14} - \frac{1197020849733927642973923766005543902099984982}{3308203377705608178254846514553285563923148827} a^{13} + \frac{1268169623423217731165915218539297851247703226}{3308203377705608178254846514553285563923148827} a^{12} + \frac{462769491207785713785164146619520124433458739}{3308203377705608178254846514553285563923148827} a^{11} + \frac{1027511569818637256534431418793319801311334390}{3308203377705608178254846514553285563923148827} a^{10} - \frac{63930701913965836261187686011602551659655014}{254477182900431398327295885734868120301780679} a^{9} - \frac{1033830660462985567908691872204382433359638626}{3308203377705608178254846514553285563923148827} a^{8} + \frac{250360914022466518438834718779312799807395688}{3308203377705608178254846514553285563923148827} a^{7} + \frac{326425396738722649368451824636723386775138709}{3308203377705608178254846514553285563923148827} a^{6} + \frac{1071845371984875272778840730572440242247987756}{3308203377705608178254846514553285563923148827} a^{5} - \frac{1601744599726963996618838499549111357815100478}{3308203377705608178254846514553285563923148827} a^{4} - \frac{613648271249907548291805641786939048707279507}{3308203377705608178254846514553285563923148827} a^{3} + \frac{381011772556836966142134333620114213956679433}{3308203377705608178254846514553285563923148827} a^{2} - \frac{50299374657665933461639786364751095787802}{1176041015892502018576198547654918437228279} a - \frac{22103436912090958546266741604915249941904}{351599891349304727203193380226728192573403}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 216238.286744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 88 conjugacy class representatives for t18n472 are not computed |
| Character table for t18n472 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.10859723.1, 9.3.164590951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 1399 | Data not computed | ||||||
| 4523 | Data not computed | ||||||