Normalized defining polynomial
\( x^{18} - 4 x^{17} + 27 x^{16} - 60 x^{15} + 184 x^{14} - 362 x^{13} + 1149 x^{12} - 2823 x^{11} + 6431 x^{10} - 8311 x^{9} + 12191 x^{8} - 16179 x^{7} + 72116 x^{6} - 64228 x^{5} - 9158 x^{4} + 235477 x^{3} + 50634 x^{2} - 611585 x + 912673 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2506638307140843254915898467=-\,7^{12}\cdot 1399^{2}\cdot 4523^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 1399, 4523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{97} a^{16} - \frac{4}{97} a^{15} + \frac{27}{97} a^{14} + \frac{37}{97} a^{13} - \frac{10}{97} a^{12} + \frac{26}{97} a^{11} - \frac{15}{97} a^{10} - \frac{10}{97} a^{9} + \frac{29}{97} a^{8} + \frac{31}{97} a^{7} - \frac{31}{97} a^{6} + \frac{20}{97} a^{5} + \frac{45}{97} a^{4} - \frac{14}{97} a^{3} - \frac{40}{97} a^{2} - \frac{39}{97} a$, $\frac{1}{30628175132447925323718875972005191049696966789829} a^{17} + \frac{1833282544583134435921021484354728815201519873}{1056143970084411218059271585241558312058516096201} a^{16} + \frac{1037170711669429100829603725762510790172862492997}{2356013471726763486439913536308091619207458983833} a^{15} - \frac{14773653966510485079669513960399430017201445058646}{30628175132447925323718875972005191049696966789829} a^{14} + \frac{14373196985888694969172216260321042608468476379978}{30628175132447925323718875972005191049696966789829} a^{13} - \frac{13445305649876079023800465214331585693170858219820}{30628175132447925323718875972005191049696966789829} a^{12} + \frac{5872875975572791453666553212168121903667096259794}{30628175132447925323718875972005191049696966789829} a^{11} + \frac{10919372635158816423597347098314515782309490835364}{30628175132447925323718875972005191049696966789829} a^{10} - \frac{696633473834950310158115327521743625634213981427}{2356013471726763486439913536308091619207458983833} a^{9} + \frac{3401503976467758131070296132348410953654882880577}{30628175132447925323718875972005191049696966789829} a^{8} - \frac{3294773473911318001842078329587326193363918899771}{30628175132447925323718875972005191049696966789829} a^{7} - \frac{957743467841496765426424994003137089745326284629}{2356013471726763486439913536308091619207458983833} a^{6} - \frac{10909875234399349636864552653785538495572900025605}{30628175132447925323718875972005191049696966789829} a^{5} - \frac{11987282003204743103908418722046687902431700308}{30628175132447925323718875972005191049696966789829} a^{4} - \frac{5884505495936980748274301492629990922135478311704}{30628175132447925323718875972005191049696966789829} a^{3} - \frac{13340492217226978810307906759432434307663267450542}{30628175132447925323718875972005191049696966789829} a^{2} - \frac{103184056495171772230731089679043321941881032645}{315754382808741498182668824453661763398937801957} a + \frac{86933188100297156840300407746152116803925385}{3255199822770530909099678602615069725762245381}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 471320.757853 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 88 conjugacy class representatives for t18n472 are not computed |
| Character table for t18n472 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.10859723.1, 9.3.164590951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 1399 | Data not computed | ||||||
| 4523 | Data not computed | ||||||