Normalized defining polynomial
\( x^{18} - x^{17} + 20 x^{16} - 58 x^{15} + 4523 x^{14} - 44727 x^{13} + 156314 x^{12} + 565724 x^{11} + 5297847 x^{10} - 62092191 x^{9} - 87377712 x^{8} + 2705060950 x^{7} - 3711440771 x^{6} - 44238428233 x^{5} + 171707544098 x^{4} + 136367346344 x^{3} - 1463520329344 x^{2} + 355897168384 x + 11080414060544 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2501730511640249522911904558507505938447107600063=-\,19^{17}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $488.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(703=19\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{703}(1,·)$, $\chi_{703}(581,·)$, $\chi_{703}(582,·)$, $\chi_{703}(136,·)$, $\chi_{703}(585,·)$, $\chi_{703}(336,·)$, $\chi_{703}(280,·)$, $\chi_{703}(218,·)$, $\chi_{703}(287,·)$, $\chi_{703}(416,·)$, $\chi_{703}(485,·)$, $\chi_{703}(423,·)$, $\chi_{703}(367,·)$, $\chi_{703}(118,·)$, $\chi_{703}(567,·)$, $\chi_{703}(121,·)$, $\chi_{703}(122,·)$, $\chi_{703}(702,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} + \frac{5}{64} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{1408} a^{8} - \frac{1}{352} a^{7} + \frac{13}{704} a^{6} + \frac{1}{44} a^{5} - \frac{5}{128} a^{4} - \frac{19}{352} a^{3} + \frac{87}{352} a^{2} - \frac{41}{88} a + \frac{3}{11}$, $\frac{1}{2816} a^{9} - \frac{1}{2816} a^{8} - \frac{1}{352} a^{7} + \frac{3}{128} a^{6} - \frac{91}{2816} a^{5} + \frac{23}{2816} a^{4} + \frac{49}{1408} a^{3} + \frac{21}{352} a^{2} - \frac{1}{11}$, $\frac{1}{11264} a^{10} - \frac{1}{5632} a^{9} + \frac{1}{11264} a^{8} - \frac{23}{5632} a^{7} + \frac{227}{11264} a^{6} + \frac{97}{5632} a^{5} - \frac{365}{11264} a^{4} + \frac{215}{5632} a^{3} - \frac{47}{1408} a^{2} + \frac{79}{176} a - \frac{5}{11}$, $\frac{1}{22528} a^{11} - \frac{1}{22528} a^{10} - \frac{1}{22528} a^{9} + \frac{3}{22528} a^{8} + \frac{15}{2048} a^{7} + \frac{613}{22528} a^{6} + \frac{1013}{22528} a^{5} - \frac{463}{22528} a^{4} - \frac{1005}{11264} a^{3} - \frac{25}{256} a^{2} - \frac{163}{352} a - \frac{9}{22}$, $\frac{1}{22528} a^{12} - \frac{1}{11264} a^{9} - \frac{3}{11264} a^{8} - \frac{9}{11264} a^{7} + \frac{5}{352} a^{6} + \frac{469}{11264} a^{5} + \frac{845}{22528} a^{4} - \frac{2731}{11264} a^{3} - \frac{529}{2816} a^{2} + \frac{71}{352} a + \frac{3}{22}$, $\frac{1}{3964928} a^{13} - \frac{39}{1982464} a^{12} - \frac{3}{991232} a^{11} - \frac{5}{495616} a^{10} + \frac{203}{1982464} a^{9} + \frac{115}{991232} a^{8} + \frac{4911}{991232} a^{7} + \frac{10707}{495616} a^{6} - \frac{158735}{3964928} a^{5} - \frac{567}{1982464} a^{4} + \frac{32121}{495616} a^{3} + \frac{4777}{30976} a^{2} - \frac{21}{704} a - \frac{85}{484}$, $\frac{1}{15859712} a^{14} + \frac{1}{15859712} a^{13} - \frac{95}{7929856} a^{12} - \frac{71}{3964928} a^{11} + \frac{31}{7929856} a^{10} + \frac{779}{7929856} a^{9} + \frac{199}{991232} a^{8} + \frac{9159}{3964928} a^{7} - \frac{170023}{15859712} a^{6} + \frac{21363}{1441792} a^{5} - \frac{243493}{7929856} a^{4} + \frac{1535}{1982464} a^{3} + \frac{4021}{123904} a^{2} + \frac{7187}{30976} a - \frac{467}{1936}$, $\frac{1}{31719424} a^{15} + \frac{1}{31719424} a^{13} - \frac{13}{1441792} a^{12} - \frac{25}{1441792} a^{11} - \frac{69}{3964928} a^{10} + \frac{365}{15859712} a^{9} - \frac{181}{7929856} a^{8} - \frac{171843}{31719424} a^{7} - \frac{7741}{3964928} a^{6} - \frac{110459}{31719424} a^{5} + \frac{608577}{15859712} a^{4} + \frac{213121}{3964928} a^{3} + \frac{25611}{247808} a^{2} + \frac{12709}{61952} a - \frac{1509}{3872}$, $\frac{1}{111856138059776} a^{16} + \frac{455}{84039172096} a^{15} - \frac{1519831}{111856138059776} a^{14} - \frac{8249425}{111856138059776} a^{13} + \frac{351096949}{27964034514944} a^{12} - \frac{203799811}{55928069029888} a^{11} + \frac{2480186081}{55928069029888} a^{10} + \frac{7854355215}{55928069029888} a^{9} + \frac{35395995289}{111856138059776} a^{8} + \frac{251655344713}{111856138059776} a^{7} - \frac{1002211057691}{111856138059776} a^{6} + \frac{6820711875299}{111856138059776} a^{5} - \frac{223395640957}{5084369911808} a^{4} - \frac{1766528381971}{13982017257472} a^{3} + \frac{201152939555}{873876078592} a^{2} + \frac{29003819041}{218469019648} a + \frac{6000677135}{13654313728}$, $\frac{1}{1529887672445755364734212719346637387362992128} a^{17} + \frac{1074866826441302769073883098929}{764943836222877682367106359673318693681496064} a^{16} + \frac{4481450476002649527575127166853242365}{764943836222877682367106359673318693681496064} a^{15} + \frac{73009700038568266214336738783342391}{34770174373767167380323016348787213349158912} a^{14} + \frac{182956077985252063689778691313859923335}{1529887672445755364734212719346637387362992128} a^{13} - \frac{74906717758841139005191924099015394787}{69540348747534334760646032697574426698317824} a^{12} - \frac{6454595390164067877459943807891099970475}{382471918111438841183553179836659346840748032} a^{11} + \frac{6660876701654867480246131844104068875691}{191235959055719420591776589918329673420374016} a^{10} + \frac{142826596797572559155691497690982144651199}{1529887672445755364734212719346637387362992128} a^{9} - \frac{17552600044164428841276797445640512729027}{69540348747534334760646032697574426698317824} a^{8} + \frac{1634451078023403462617586708089982960349669}{764943836222877682367106359673318693681496064} a^{7} + \frac{7281083633784992057788426409535387468068317}{382471918111438841183553179836659346840748032} a^{6} + \frac{51156437352824181338897321330496525388370521}{1529887672445755364734212719346637387362992128} a^{5} - \frac{42521790194251318053891698461230892502497519}{764943836222877682367106359673318693681496064} a^{4} - \frac{33159951066683104500089059071003124793094999}{191235959055719420591776589918329673420374016} a^{3} - \frac{99954356271476870195642874429171310187941}{11952247440982463786986036869895604588773376} a^{2} - \frac{1208037248344304174274867070616620996498227}{2988061860245615946746509217473901147193344} a - \frac{21014965218539127052296888300703128501101}{186753866265350996671656826092118821699584}$
Class group and class number
$C_{7801759098}$, which has order $7801759098$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4738886400565.654 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-703}) \), 3.3.494209.2, 6.0.171702502583743.1, 9.9.59654416235884558133761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | $18$ | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 37 | Data not computed | ||||||